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ABSTRACT

We present a cluster-based distributed algorithm for calibrat-

ing large networks of wireless cameras. Due to the com-

plex nature of sensing modality of a camera sensor, the work

presented here differs significantly from the previous local-

ization methods. Our system does not require any beacon

nodes; it only utilizes object features of moving objects in

the scene extracted from image sequences. The algorithm is

fully distributed, and the localization estimates can be im-

proved as more object features are acquired in the network.

We show simulations of our system using a graphical sim-

ulator we developed specifically for wireless camera sensor

networks. Early results indicate that our system is capable of

localizing a large network of cameras in an energy-efficient

way.

1. INTRODUCTION

Wireless sensor networks is an emerging technology that is

envisioned to revolutionize the way how information can be

gathered in different environments and how the information

can be processed for a wide variety of applications. A typi-

cal sensor network consists of a large number of sensor nodes

densely deployed in the field, each equipped with wireless

communication, sensing and computing capabilities with a

limited power resource. Each node gathers its surrounding

information according to its sensing modality, and shares the

data by communicating with other nodes in the network. Since

the data collected by each node is location-specific, obtaining

the locations of nodes is one of the fundamental problems in

sensor networks. Consequently, there has been much effort

in developing localization algorithms for wireless sensor net-

works (e.g., see [1, 2, 3, 4] and the references therein). These

localization techniques, however, are not suited for camera

sensors for two main reasons. First, the level of localization

accuracy achieved is not sufficient for typical computer vision

tasks. Even more importantly, these localization algorithms

do not provide the orientation of a sensor, which is crucial for

camera-based sensor networks. Although the existing local-

ization algorithms may be used to obtain approximate posi-

tions of camera sensors, in order to obtain the precise posi-

tions and orientations of cameras that would be appropriate

for basic computer vision tasks involving multiple cameras,

an alternative calibration technique is needed.

Another challenging issue in calibrating a large network

of wireless cameras is that the algorithm must take into ac-

count that each camera node has limited power resource. This

implies that the energy efficiency of the algorithm is as im-

portant as the calibration accuracy – an entirely non-existent

problem in wired camera network settings.

In this paper, we introduce four different approaches to

the calibration of wireless camera networks, namely a central-

ized approach, a peer-to-peer offline approach, a peer-to-peer

online approach, and finally a cluster-based online approach.

We use our simulation system we designed specifically for

wireless camera networks to analyze different tradeoffs be-

tween calibration accuracy, the amount of local memory used,

and the number messages transmitted and received under var-

ious network settings. Finally, we show that our proposed

cluster-based online calibration algorithm achieves calibra-

tion accuracy comparable to the centralized approach while

the amount of local memory used in each camera node and

the number of messages exchanged in the network are signif-

icantly less than the other calibration approaches.

2. PREVIOUS WORK

Calibration of multiple cameras is a well-studied problem in

the computer vision community [5, 6, 7]. The majority of

the works, however, does not take into account the issue of

scalability and energy-efficiency where typically under 10, at

most under 50 cameras, only have been considered. Thus,

the calibration is typically performed by a single processor

that collects the required image features of all the cameras,

then performs a minimization of the calibration errors for the

entire camera network.

Recently, however, there has been some work in devel-

oping localization algorithms specifically for camera-based

sensor networks. Lee and Aghajan [8] proposed a localiza-

tion technique that can estimate both the locations of a mov-

ing target and camera nodes. The method requires selecting

two reference nodes to define the origin and the unit length,

and the algorithm finds the positions and orientations of the

other sensors with respect to the reference nodes. The tech-

nique was tested only in 2D space and only 5 cameras were
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Fig. 1. Camera projection model

used for testing the algorithm. Mantzel et al. [9] proposed

a distributed localization algorithm for camera sensors that

iteratively refines the localization estimates. The algorithm

assumes that image features required for localization have al-

ready been acquired and that the correspondences between the

image features are known, thus the method cannot be applied

in dynamic networks. Liu et al. [10] presented an automated

calibration protocol for camera-based sensor networks. The

proposed method utilizes a calibration device that is equipped

with GPS and an LED. Using the global coordinates given by

the calibration device and the image coordinates of the LED

recorded in the camera, the camera’s position and orientation

can be computed. The main drawback of this approach is that

the calibration device needs to be presented in front of each

camera, which requires manual human assistance. Devarajan

and Radke [11] proposed a distributed calibration algorithm

for large camera networks. This work is similar to the dis-

tributed offline approach described in this paper, but the main

difference is that the system assumes a message can be ex-

changed between any pairs of cameras. Finally, Funiak et al.

[12] addressed the camera network calibration task by solv-

ing a simultaneous localization and tracking problem that es-

timates both the trajectory of the target object and poses of

the cameras at the same time. However, the system assumes

that all the cameras are ceiling mounted and considers only

three extrinsic parameters (x, y, θ) of the camera.

3. BACKGROUND

In this section, we present some background material that is

important to understand the work presented in this paper. We

first describe the basic principles of camera projection model.

Then we discuss how a pair of cameras can be related to each

other through appropriate coordinate transformation.

3.1. Perspective Camera Model

Consider the image shown in Fig. 1. Let OXY Z define

the world coordinate system and CiXiY iZi the coordinate

system of the i-th camera. Let Mw
j = [xw

j , yw
j , zw

j , 1]T be the

homogeneous coordinate vector of the j-th object point with

respect to the world coordinate system, and mi
j = [ui

j , v
i
j , 1]T

be the homogeneous image coordinate vector that represents

the j-th object measured in the i-th camera. The basic image

projection equation states that mi
j is the projection of Mw

j up

to an unknown scale factor s:

smi
j = PiMw

j (1)

where Pi is the 3×4 projection matrix of the i-th camera. We

can rewrite Eq. (1) by further decomposing the projection

matrix Pi:

smi
j = Ai

[
Ri,w | ti,w

]
Mw

j (2)

where Ai is a 3×3 upper triangular matrix that encodes the

intrinsic parameters of camera i (e.g., focal length, principal

point, etc.), and Ri,w and ti,w are, respectively, a 3×3 rota-

tion matrix and a translation vector that describe the 3D dis-

placement from the world coordinate system to the i-th cam-

era coordinate system.
A rotation matrix can be represented more compactly by

a unit quaternion q = [qw, qx, qy, qz]
T where qw =√

1 − q2
x − q2

y − q2
z . A rotation matrix R corresponding to a

unit quaternion q is given by:

R(q) =

2

4

1 − 2q
2
y
− 2q

2
z

2(qxqy − qzqw) 2(qxqz + qyqw)
2(qxqy + qzqw) 1 − 2q

2
x
− 2q

2
z

2(qyqz − qxqw)
2(qxqz − qyqw) 2(qyqz + qxqw) 1 − 2q

2
x
− 2q

2
y

3

5

We will denote the extrinsic calibration parameters of a cam-

era i as pw,i =

[
qw,i

tw,i

]
where qw,i and tw,i are, respec-

tively, a quaternion vector and a translation vector that de-

scribe the transformation from the i-th camera coordinate sys-

tem to the world coordinate system. Similarly, the relative

transformation parameters from the j-th camera to the i-th
camera is denoted as pi,j . A 4×4 homogeneous transforma-

tion matrix H corresponding to a calibration parameter vector

pw,i is given by:

H(pw,i) =

[
R(qw,i) tw,i

0 1

]
(3)

Finally, for each camera parameter, say pi,j , we denote

its corresponding covariance matrix as Σi,j .

3.2. Pairwise Calibration

Finding the relative position and orientation between a pair

of cameras is a well-studied problem in the computer vision

community. The approach that fits well with our distributed
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online algorithm is known as the estimation of motion and

structure. Suppose there are n object points that are visible

by two cameras 1 and 2. The fundamental matrix F between

the two cameras is defined by the equation:

(m2
j )

T Fm1
j = 0, j = [1, n] (4)

Given at least eight matching image coordinates, the unknown

fundamental matrix F can be solved [13]. The fundamen-

tal matrix along with each camera’s intrinsic parameters (i.e.,

matrix A in Eq. (2)) can then be used to compute the relative

position and orientation between the two cameras up to an

unknown scale [14]. The advantage of the motion and struc-

ture method is that the 3D coordinates of object points do not

need to be known — only corresponding image coordinates

from two cameras. This indeed is an attractive feature that

eliminates the need of global landmarks with known 3D loca-

tions or placing calibration objects at specific positions. The

disadvantage is that the scale is arbitrary.

4. DISTRIBUTED CALIBRATION OF LARGE

WIRELESS CAMERA NETWORKS

In this section we will describe two distributed algorithms for

calibrating large wireless camera networks. We will first de-

scribe a peer-to-peer network approach to the distributed cal-

ibration, followed by a distributed calibration based on dy-

namic clustering of the camera nodes.

Before we dive into the algorithm description, let us lay

out some notations and assumptions. Let N be the set of

all camera nodes in the network. For each camera i ∈ N ,

we define Si to be a set of neighbors to which camera i can

communicate directly (i.e., one-hop neighbor), and Vi to be a

subset of these one-hop neighbors that also have overlapping

viewing volume with camera i. We will call Si as communi-

cation neighbors of camera i, and Vi as vision neighbors of

camera i. Note that Vi ⊆ Si ⊂ N . For each camera i, its

position and the orientation with respect to the world coordi-

nate system is given by the camera parameter vector pw,i, and

the relative position and orientation to a neighbor k ∈ Vi is

given by pi,k. The goal here is to estimate a set of calibration

parameters Pi =
{
pw,i,pi,k | k ∈ Vi

}
for all i ∈ N .

We assume that each camera in the network knows its

own intrinsic camera parameters (e.g., focal length, principal

points, distortion parameters, etc.). Although it is possible

to estimate the intrinsic parameters using corresponding im-

age points between cameras [15] and it would be possible to

easily add this capability in the proposed system, we focus

in this paper only on the estimation of the extrinsic camera

parameters.

We also assume that the camera network is given the knowl-

edge of the target objects used in the calibration. Specifically,

we assume that each target object consists of multiple (at least

two) distinctive features where the distance between the fea-

ture points are known. The distance information can be used

to compute the correct scale in each pairwise calibration. In

practice, we can devise an object attached with, for example,

a blue LED and a red LED with a known distance between

them.

4.1. Peer-To-Peer Distributed Calibration

A natural way to realize a distributed calibration of a large

wireless camera network is to take a peer-to-peer network ap-

proach. We mean peer-to-peer in the sense that each cam-

era node is responsible for collecting local measurements,

sharing the measurements with its peers (i.t., communication

neighbors), and computing the relative position and orienta-

tion of the neighbors. There are three main stages involved in

distributed calibration: data collection, local calibration, and

recursive estimation of calibration parameters.

4.1.1. Data Collection

Once a camera node is deployed and activated, it begins to

search for moving objects in the scene. When a camera node

detects a known target object in an image, a measurement

tuple zi of the target object is constructed. Without loss of

generality, we will assume that all target objects have two dis-

tinctive features with a known distance between them. We

can then define Zi to be a set of measurement tuples obtained

by camera i:

Zi =
{
zi
j | zi

j = (mi
j ,d

i
j , t

i
j)

}
(5)

where zi
j denotes the j-th measurement tuple, mi

j =

[u1, v1, u2, v2]
T

is a measurement vector that contains the im-

age coordinates of the two target features, di
j a target descrip-

tion vector that uniquely identifies the target object, and fi-

nally tij the time at which the image was captured. Each

time a measurement is generated, a message containing the

acquired measurement is broadcast. Therefore, each camera

in the network not only accumulates its local measurements

Zi, but also the measurements Zk received by its neighbors

k ∈ Si.

4.1.2. Local Calibration

Assuming that each moving object can be identified by its

description vector and that the image acquisition in the cam-

era network is time-synchronized, two measurement tuples zi
j

and zk
l acquired from two different cameras are correspond-

ing measurements if (di
j , t

i
j) = (dk

l , tkl ). A set of correspond-

ing measurements between camera i and camera k is then de-

fined as:

Ci,k =
{
(zi

j , z
k
l ) | zi

j ∈ Zi, zk
l ∈ Zk, (di

j , t
i
j) = (dk

l , tkl )
}

(6)

When a sufficient number of measurements are accumu-

lated, the number of corresponding measurements between
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local measurements and each neighbor’s measurements are

computed. Then, for each neighbor with at least eight corre-

spondences, a pairwise calibration can be performed to com-

pute the relative position and orientation of the neighbor. Re-

call from the previous section that eight or more correspond-

ing image points between a pair of cameras are required to

compute the relative calibration parameters between two cam-

eras up to an unknown scale. However, since we know the

distance between two feature points of a target object, the cor-

rect scale for each pairwise calibration can be computed as

follows. First, we compute the relative calibration parameters

p̂i,k =
[

(qi,k)T (t̂i,k)T
]T

using a set of corresponding

image coordinates in Ci,k. Note the hat ̂ implies an unknown

scale. Then, based on these parameters, it is possible to ob-

tain by stereo triangulation the 3D coordinates of each of the

corresponding measurements in Ci,k at an arbitrary but con-

sistent scale. Let M̂1j and M̂2j be the reconstructed 3D co-

ordinates of the two target features corresponding to the j-th

element of Ci,k. Then, since the distance d between the two

target features is known, it is possible to compute the scale

factor s using:

s =
1

d


 1

|Ci,k|

|Ci,k|∑

j=1

∥∥∥M̂1j − M̂2j

∥∥∥


 (7)

Then, the scale-corrected relative calibration parameter vector

and the 3D coordinates are:

pi,k =

[
qi,k

(
1
s

)
t̂i,k

]
and

[
M1j

M2j

]
=

(
1

s

) [
M̂1j

M̂2j

]

After each pairwise calibration, the covariance Σi,k cor-

responding to the calibration parameter vector pi,k can be es-

timated as follows. Each observation mk
j by camera k can be

mapped to a corresponding observation mi
j in camera i by a

function mi
j = hi,k(pi,k,mk

j ). Now let the vector xi,k be

the stacked vector of n corresponding observations in cam-

eras i and k, that is, xi,k = (mk
1 , ...,mk

n,mi
1, ...,m

i
n). The

stacked observation vector relates to the camera parameters

by the function xi,k = f i,k(pi,k,mi
1, ...,m

i
n). Then, the es-

timated observations and, consequently, the parameter vector

pi,k can be estimated based on these observations using an

optimal criterion such as maximum likelihood assuming that

the observations are perturbed by Gaussian noise. In this case,

the covariance matrix of the vector
[
pi,k,mk

1 , ...,mk
n

]
, that

is, the arguments of f i,k(·) is given by [16]:

Σi,k
p,m =

[
AT Σ−1

x A AT Σ−1
x B

BT Σ−1
x A BT Σ−1

x B

]†

(8)

where † denotes the pseudo-inverse, A = ∂fi,k(·)
∂p

, B =
∂fi,k(·)

∂mi
1
,...,mi

n

, and Σx is the covariance matrix of xi,k. The top-

left block of the matrix in Eq. (8) corresponds to the covari-

ance of the relative position parameters Σi,k. As we will ex-

plain shortly in the next section, the calibration estimate vec-

tor pi,k and its corresponding covariance matrix Σi,k can be

updated recursively if prior estimates are available.

Once we obtain approximate calibration parameters pi,k

for all neighbors k ∈ Vi as described above, one could carry

out a nonlinear optimization scheme such as bundle adjust-

ment [17] in order to optimize the camera parameters over all

available data. Let h be a function that describes the reprojec-

tion of 3D coordinates M onto the image plane of a camera

with calibration parameter p, i.e., m = h(p,M). The bundle

adjustment essentially minimizes the reprojection error with

respect to all 3D points and camera parameters, specifically:

min
pi,k,Mj

|Vi|∑

k=1

|Ci,k|∑

j=1

∥∥h(pi,k,Mj) − mk
j

∥∥ (9)

by iteratively solving the weighted normal equations:

JT Σ−1
m Jδ = JT Σ−1

m ǫ (10)

where J is the Jacobian matrix of h, Σm the covariance ma-

trix of the measurement vector, δ the sought update of the pa-

rameter vector in each iteration, and finally ǫ the reprojection

error vector. The inverse covariance matrix of the calibration

parameters can be obtained from the corresponding diagonal

term of the matrix JT Σ−1
m J at the end of the iteration. Al-

though efficient implementation schemes for this large non-

linear optimization problem are available [18], it may still be

computationally too expensive for the current generation of

smart wireless cameras. Thus we will treat the bundle adjust-

ment process as an optional procedure.

Algorithm 1 summarizes the local calibration procedure.

Each camera i computes the relative position parameters and

corresponding covariance matrix (pi,k,Σi,k) with respect to

each of its neighbors k for which it has enough corresponding

points, that is
∣∣Ci,k

∣∣ > 8. These initial parameter estimates

are added to the set Pi. When new estimates are computed,

they are added to the temporary set P ′ so that they can be used

to further refine the initial estimates via recursive estimation

of camera parameters, described in the next section.

4.1.3. Recursive Estimation of Calibration Parameters

A local calibration at a camera node provides the calibration

parameters for each of its neighbors. Since the local cali-

bration is carried out independently at each node, two neigh-

boring cameras i and k, where i ∈ Vk and k ∈ Vi, each

has its own estimate of the other, i.e., pi,k computed at Cam-

era i and pk,i computed at Camera k. In an ideal case, they

should be exactly the inverse transformation of each other,

i.e., H(pi,k) = H(pk,i)−1, but in general this will not be the

case due to measurement noise. Therefore, it is necessary to
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Algorithm 1 Local calibration procedure.

Local-Calibration(i)
P ′ = ∅

for each k ∈ Vi

Find Ci,k of Eq. (6)

if (
∣∣Ci,k

∣∣ > 8)
Compute (pi,k,Σi,k)
if (pi,k,Σi,k) /∈ Pi

add (pi,k,Σi,k) to Pi

else

add (pi,k,Σi,k) to P ′

end if

end if

end for

if P ′ 6= ∅

Recursive-Estimation(i, P ′)

end if

// optional

Refine Pi by Bundle Adjustment

Remove used measurements

integrate the estimates in the two cameras to obtain a more

accurate estimate.

The need for integrating calibration estimates also arises

in an online calibration approach where cameras in the net-

work compute new calibration estimates as more measure-

ments are acquired locally and more measurements are re-

ceived from its neighbors throughout the calibration process.

We employ the Weighted Recursive Least Squares technique

to integrate a previous estimate (p(t − 1),Σ(t − 1)) with

a new estimate (p
′

(t),Σ
′

(t)) into a more accurate estimate

(p(t),Σ(t)) by the following recursions:

K = Σ(t − 1)
(
Σ(t − 1) + Σ

′

(t)
)−1

(11)

p(t) = p(t − 1) + K
(
p

′

(t) − p(t − 1)
)

(12)

Σ(t) = Σ(t − 1) − KΣ(t − 1) (13)

It is important to note that, under Gaussian noise assump-

tion, p(t) in Eq. (12) corresponds to the best unbiased es-

timator of the real camera parameters. The recursive update

of calibration parameters is repeated whenever new calibra-

tion estimates from another local calibration are available or

calibration estimates sent by a neighbor are received.

The procedures described so far provide each camera only

the relative positions and orientations of its neighbors. In or-

der to relate any locational information defined in a local co-

ordinate system to the rest of the nodes in the network, it is

inevitable to obtain a common coordinate system that is glob-

ally consistent throughout the network. One approach to ob-

tain a globally common coordinate system is to use reference

index [19]. Each node initially sets its reference index, de-

noted as w, to its own node ID. That is, w = i, thus pw,i = 0

Algorithm 2 Recursive estimation of

camera parameters.

Recursive-Estimation(senderID, P ′)

if (senderID = i) //local update

for each ((p′i,k,Σ′i,k) ∈ P ′)

Update (pi,k,Σi,k) using Eqs. (11-13)

end for

else //received parameters from a neighbor

for each (p′k,i,Σ′k,i) ∈ P ′

Compute (p′i,k,Σ′i,k) from H(p′k,i)−1

Update (pi,k,Σi,k) using Eqs. (11-13)

end for

if (senderID < i)
Hw,i = H(p′w,k)H(p′k,i)
Compute (pw,i,Σw,i) from Hw,i

and replace it in Pi

end if

end if

Broadcast m1 = (i,Pi)

(H(pw,i) = I). Then, whenever a camera receives calibra-

tion parameters of a neighbor with a lower reference index,

the camera changes the reference index and transforms the

reference coordinate system to the coordinate system of the

neighbor. In the end, the reference coordinate systems of all

the nodes in the network will be in the coordinate system of

the node with the lowest ID.

The complete procedure for the recursive estimation of

camera parameters is shown in Algorithm 2. Figure 2 shows

an example of one step of the recursive estimation of camera

parameters in a simple network of 3 cameras. The left fig-

ure shows the status of the network at a given moment when

camera 1 has already computed p0,1, its relative position pa-

rameters with respect to camera 0, and camera 2 has already

computed p1,2, its relative position parameters with respect

to camera 1. At that time, camera 1 has also defined its rel-

ative position to the origin to pw,1 = p0,1. As camera 1
receives new measurements from camera 2, it computes p2,1,

its relative position parameters with respect to camera 2 and

broadcasts these new parameters along with its own relative

position with respect to the origin pw,1. After camera 2 re-

ceives p2,1 and pw,1 from camera 1, it updates its own esti-

mate p1,2 based on the inverse transformation H(p2,1)−1 and

Eqs. (11-12). After that, camera 2 verifies that the node ID of

the sender is lower than its own and that it should replace its

own global reference by that sent by camera 1. Therefore, it

replaces its own global position parameters vector pw,2 by the

parameter vector corresponding to the homogeneous transfor-

mation H(pw,1)H(p1,2), and broadcasts its own updated es-

timates to its neighbors. The left figure in Figure 2 shows the

status of the network at that moment.

Algorithm 3 shows the complete the peer-to- peer dis-
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Fig. 2. Recursive update of camera parameters.

Algorithm 3 Peer-to-peer distributed calibration.

Peer-to-Peer-Calibration

while (1)
if (new measurement available)

Generate zi
j = (mi

j ,d
i
j , t

i
j)

Add zi
j to Zi

Broadcast m2 = (i, zi
j)

end if

if (Received m2 = (im2, zm2))
Add zm2 to Zim2

end if

if (enough measurements

in Zi and Zim2)

Local_Calibration(i)
end if

end while

tributed calibration procedure.

4.2. Cluster-based Distributed Calibration

The main drawback of the peer-to-peer calibration approach

is that each node has to constantly listen for messages from

its neighbors and compute its relative position with respect to

them. As a consequence, the same measurements are received

and processed by multiple nodes, thereby consuming unnec-

essary energy. To mitigate this problem, we propose to assign

roles to the nodes using an event-driven clustering protocol.

After a cluster is created, only the cluster head is responsible

for receiving the measurements from the cluster members and

computing their relative positions.

Our cluster-based calibration procedure is based on an

event-driven clustering protocol that can be summarized as

follows [20]. When an object with specific visual features

is detected, cameras that detect this object create a cluster

of cameras that can communicate in a single hop and elect

a cluster head among themselves. If an object can be detected

by cameras that cannot communicate in a single hop, multi-

ple single-hop clusters are formed. If more than one object

is detected, multiple clusters are formed based on the visual

features of the objects. As the object moves, new cameras

Algorithm 4 Cluster-based data collection.

Cluster_Based_Data_Collection()

while (cluster active)

if (new measurement available)

Generate zi
j = (mi

j , t
i
j)

if (cluster head)

Add zi
j to Zi

else

Send m2 = (i, zi
j) to

cluster head

end if

end if

if (Received m2 = (im2, zm2))
Add zm2 to Zim2

end if

end while

that detect it join the cluster, cameras that lose track of the

target leave the cluster, and, when the cluster head loses track

of the target, the role of cluster head is assigned to a different

camera.

As the peer-to-peer approach, the cluster-based calibra-

tion procedure also consists of three main stages: data col-

lection, local calibration, and recursive estimation of calibra-

tion parameters. Only data collection is carried out while the

cluster is active. After the cluster head leaves the cluster and

chooses another camera to become the new cluster head, local

calibration takes place, and the former cluster head computes

its relative positions with respect to its cluster members and

broadcasts this information. Finally, the positions of the cam-

eras with respect to a global reference are computed and their

mutual relative position parameters are aggregated in the uni-

fication of calibration parameters stage.

During data collection, all the cameras that belong to a

cluster acquire information about the target. That is, after a

cluster is created, the members of the cluster as well as the

cluster head compute the image coordinates mi
j of the tar-

get. The cluster members transmit the corresponding mea-

surement tuples zi
j = (mi

j , i) to the cluster head. Since the

cluster is formed based on the target features, it is not nec-

essary to include the target description vector di
j in the mea-

surement tuples. The cluster head stores these measurements

as well as the measurements acquired by itself until the target

leaves its field of view and the role of cluster head is assigned

to a different node. Algorithm 4 shows the data collection

stage of the cluster-based calibration procedure.

After the cluster head leaves the cluster, it uses the mea-

surements it acquired and the corresponding measurements

received from the cluster members to compute its relative

position parameters pi,k with respect to each of its cluster

members according to the local calibration procedure (Alg.

1) described in section 4.1.2. New estimates, estimates com-
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Algorithm 5 Cluster-based camera calibration.

while (1)

Cluster_Based_Data_Collection()

if (enough measurements

in Zi and Zim1)

Local_Calibration(i)
end if

end while

Fig. 4. Active clusters in the test environment.

puted by neighboring cameras, and the global reference are

integrated according to the recursive update of calibration pa-

rameters described in section 4.1.3. Algorithm 5 presents the

complete cluster-based calibration procedure.

5. EXPERIMENTS

We carried out simulations of our algorithm using a graphi-

cal simulation tool that we developed specifically for wireless

camera sensor networks. Figure 3 shows the environment we

used to carry out our simulations. The environment consists

of a cube volume with the dimension of 20 × 20 × 20 meters

with 50 cameras randomly placed on the four side planes and

the top plane. All cameras view roughly the opposite direc-

tion of the plane they are on. The red edges in Fig. 3(a) indi-

cate communication connectivity among cameras. Fig. 3(b)

is the same setting as in (a), but showing the viewing vol-

umes of the cameras. Figure 4 shows the same setting with

four active clusters, where the cluster heads are represented

by the blue circles, and the cluster members are the cameras

connected to the cluster heads by blue edges. The cameras

are calibrated through the observation of a single target that

moves at random inside the cube volume.

We compared the performance of the two approaches we

present in this paper to that of two alternative approaches that

carry out offline calibration. That is, estimation of the pa-

rameters only takes place after all the data is collected. The

first alternative approach consists of computing the camera

parameters in a centralized manner. That is, all the data col-

lected by the cameras is initially transmitted to a base station.

After data collection, the base station computes the estimated

parameters of all the cameras of the network based on all the

measurements. In the second alternative approach, which we

call distributed offline calibration, all the data is initially col-

lected by the nodes in the network and then processed locally

by each node using the local calibration procedure and recur-

sive estimation of the camera parameters.

5.1. Calibration Accuracy

Evidently, the ultimate goal of our system is to accurately es-

timate the position of each camera in the network with respect

to a global reference. Therefore, we measured the accuracy

of the estimated global position of the cameras obtained by

the four different approaches. Figures 5 and 6 show the root

mean squared error with respect to the ground truth of the es-

timated translation tw,i and rotation R(qw,i) between each

camera and the global reference as a function of simulation

time. The figure shows that the total error decreases with time

in all the approaches, i.e., as new measurements are acquired

by the cameras and the estimated positions are updated, the

error in the individual cameras decreases. The initial error in-

crease corresponds to the moments when cameras that were

not previously calibrated are initialized to a somewhat poor

initial estimate. Eventually, all the cameras converge to the

same average error. We can see that the accuracy achieved by

the peer-to-peer approach and by the cluster-based approach

are comparable to the accuracy obtained using the distributed

offline or the centralized approaches. It is important to note

that, in order to keep our implementation simple so that it

could be ported to real wireless cameras, we have not em-

ployed the optional bundle adjustment step.

5.2. Number of Cameras Calibrated

Figure 7 shows the number of cameras calibrated as a function

of simulation time for the cluster-based and the peer-to-peer

calibration approaches. We can see that, since the cluster-

based approach performs much less redundant computations,

more simulation steps are necessary to calibrate all the cam-

eras.

5.3. Number of Messages

We also measured the total number of messages exchanged

by the cameras during calibration using the four approaches.

To compare the number of messages exchanged by each of the
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(a) (b)

Fig. 3. Test environment. 50 cameras placed on the side planes and on the top plane of a 20× 20× 20 meters cube volume. (a)

two nodes connected by an edge are able to communicate with each other; (b) The same setting as in (a), but showing viewing

volumes of cameras.
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Fig. 5. Accuracy of the estimated translation of the cameras

with respect to the global reference.

approaches proposed, we moved the target using the same tra-

jectory and performed the same number of simulation steps.

The number of simulation steps was defined so that the av-

erage translation and rotation error would converge in all the

proposed approaches. Figure 8 shows the average number of

bits transmitted and received by the network after calibration

was concluded. As we can see, in the centralized approach,

since every measurement has to be transmitted to the base sta-

tion, the number of messages exchanged is much higher than

in the other three approaches. In the cluster-based approach,

since the cluster members do not need to receive messages

from their neighbors during data collection, they can turn off

their radio receivers to avoid overhearing messages sent to the
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Fig. 6. Accuracy of the estimated rotation of the cameras with

respect to the global reference.

cluster head. As a consequence, there is a substantial reduc-

tion in the number of bits received compared to the peer-to-

peer approach.

5.4. Memory Requirements

Since the amount of memory available in a wireless camera

node is very constrained, for an algorithm to be feasible in

practice it must require the storage of a limited amount of in-

formation. Figure 9 shows the maximum amount of memory

used by each node of the network to store the acquired mea-

surements in the cluster-based approach and the offline ap-

proaches. As expected, since in the centralized approach the
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base station must store all the measurements acquired by the

network, it must have a very large amount of memory. In the

distributed offline approach, since each node must store all the

measurements acquired in its neighborhood during the entire

process, each node should be provided a reasonable amount

of memory. Although each node in the distributed offline ap-

proach requires less storage capacity than the base station in

the centralized approach, we can see that the memory require-

ments of the cluster-based approach are much lower.

6. CONCLUSION AND FUTURE WORK

We presented a distributed online localization system specif-

ically developed for a large network wireless cameras. Our

system does not require any beacon nodes, but only utilizes

object features of moving objects in the scene extracted from

image sequences. The algorithm is fully distributed, and the
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Fig. 9. Maximum amount of memory used by each node dur-

ing calibration.

localization estimates can be improved as more object fea-

tures are obtained. We showed simulations of our system us-

ing a graphical simulator we developed specifically for wire-

less camera sensor networks. Early results showed that our

system is capable of localizing a large network of cameras ac-

curately. The peer-to-peer approach, although more accurate

than the cluster-based approach, requires that the nodes re-

ceive much more measurements from their neighbors, there-

fore spending much more energy.

We envision several directions for future work. First, the

algorithm obviously needs to be tested in real wireless cam-

eras such as Cyclops cameras [21]. Since we have employed

only simple algorithms that do not require complex iterative

solutions, we should be able to implement them efficiently in

a real wireless camera. In fact, this project is already being

carried out and the initial results are encouraging.

In addition to that, we plan on employing multiple ob-

jects in the calibration procedure since this should greatly

reduce the time required to calibrate the entire network. In

that case, we believe that the cluster-based approach should

provide even greater energy savings. This is due to the fact

that, since clusters are created to track a specific object, the

features of the object do not need to be included in the mea-

surement messages transmitted within a cluster. Suppose k
objects are used to calibrate the network. In that case, if no

clusters are formed, at least log2 k additional bits are required

in each message to identify the objects (assuming a very sim-

plistic case in which a pair of objects can be distinguished by

a single bit). Therefore, at least 8 × log2k bits are required

for each parameter estimation. However, clustering evidently

imposes communication overhead, which is a function of the

velocity at which the target moves and the camera arrange-

ment. Therefore, it is important to make sure that, for a spe-
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cific camera arrangement, the target speed is adjusted so that

the total number of messages transmitted for cluster main-

tenance is smaller than the number of messages required to

estimate the camera positions without employing clustering.

Another issue that must be explored in the future is the

criterion for defining the global reference. Although the ref-

erence index approach is simple and effective, it may lead

to much unnecessary communication in the network if the

camera with lowest ID calibrates itself after a large number

of cameras is already calibrated. We plan on using different

approaches for defining the global reference that attempt to

reduce unnecessary changes of reference and the consequent

propagation of messages.
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