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ABSTRACT 

 

Modern image reconstruction algorithms rely on projection and back-projection operations to refine an image estimate in 

iterative image reconstruction. A widely-used state-of-the-art technique is distance-driven projection and back-

projection. While the distance-driven technique yields superior image quality in iterative algorithms, it is a 

computationally demanding process. This has a detrimental effect on the relevance of the algorithms in clinical settings. 

A few methods have been proposed for enhancing the distance-driven technique in order to take advantage of modern 

computer hardware. This paper explores a two-dimensional extension of the branchless method proposed by Samit Basu 

and Bruno De Man. The extension of the branchless method is named “pre-integration” because it gets a performance 

boost by integrating the data before the projection and back-projection operations. It was written with NVIDIA’s CUDA 

platform and carefully designed for massively parallel GPUs. The performance and the image quality of the pre-

integration method were analyzed. Both projection and back-projection are significantly faster with pre-integration. The 

image quality was analyzed using cone beam image reconstruction algorithms within Jeffrey Fessler’s Image 

Reconstruction Toolbox. Images produced from regularized, iterative image reconstruction algorithms using the pre-

integration method show no significant impacts to image quality. 
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1. INTRODUCTION 

 
De Man and Basu introduced the concept of distance-driven projection and back-projection in 2002 [1]. In 2004, they 

extended it to three dimensions [2]. In De Man and Basu’s 3D distance-driven model, the area of the detector-voxel 

overlap is used to determine projection and back-projection weights. The distance-driven method provides the accuracy 

needed to meet the high image quality goals of novel image reconstruction algorithms. There have been many 

approaches to optimizing distance-driven projection and back-projection on Graphics Processing Units (GPUs). 

However, all of these fail to address one of the most significant shortcomings of the distance-driven method: the overlap 

kernel. In the overlap kernel, projection or back-projection sums are accumulated based on the region of overlap of voxel 

and detector boundaries. Because these boundaries are traversed sequentially, the overlap kernel can be fairly slow on 

devices with highly parallel Single Instruction Multiple Data (SIMD) architectures such as GPUs. 

 
With the inefficiency of the overlap kernel in mind, Basu and De Man proposed a "branchless" approach in 2006 that 

works for geometries with evenly spaced detectors such as cone beam [3]. The branchless method factors the overlap 

kernel into three operations: integration of the input signal, linear interpolation of the integrated signal to obtain values at 

detector locations, and digital differentiation of the integrated signal at the interpolated detector locations. The method 

proposed in this paper, called “pre-integration,” is an extension of the branchless method. However, pre-integration has 

the potential for more significant performance improvements because it integrates the input signal in two dimensions, not 

one. Additionally, several aspects of the pre-integration method are designed specifically for modern GPUs.  

 
2. METHOD 

 
During projection, the algorithm requires the sum of the intensities of the voxels that fall within rectangular detector 

boundaries: 𝑑𝑗, 𝑑𝑗+1, 𝑑𝑘, and 𝑑𝑘+1. The function p(x, z) represents the image intensities. For each 2D slice in the 3D 

image volume, the projection operation is essentially a weighted 2D integral, where the bounds of integration are the 

detector boundaries. This is shown in equation (1). Note that back-projection is similar, but the image and sinogram are 



reversed. 
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The function p(x,z) that represents the image intensities is piecewise constant. Therefore, the double integral can be 

calculated by using an overlap kernel and a summation as shown in equation (2). 

 

 𝑑𝑗,𝑗+1,𝑘,𝑘+1 =
1

𝑑𝑘+1 − 𝑑𝑘

1

𝑑𝑗+1 − 𝑑𝑗

∑ ∑ 𝑝(𝑥, 𝑧) ∩ 𝑑𝑗,𝑗+1,𝑘,𝑘+1

𝑧𝑥

 (2) 

 
The overlap kernel from equation (2) is illustrated in Figure 1. The pseudocode in Figure 1 demonstrates a traditional 

way to calculate the overlap kernel. 

 

 
Figure 1. Detector boundaries 𝑑𝑗 , 𝑑𝑗+1, 𝑑𝑘, and 𝑑𝑘+1 mapped onto a 2D image slice p(x,z) (left) and pseudocode for the overlap kernel 

(right). The overlap kernel calculates the sum of the image intensities within the rectangular overlap region. 

 
However, note that the sum of the image intensities within any rectangular region can also be calculated using the sum of 

the intensities of four different rectangular regions: one defined by the origin and the top right point, one defined by the 

origin and the top left point, one defined by the origin and the bottom right point, and one defined by the origin and the 

bottom left point [4]. This is shown in Figure 2. 

 



 
Figure 2. The sum of the intensities in the shaded region in p(x,z) (top) can be found by taking the intensities in Region A, subtracting 

the intensities in Regions B and C, and adding the intensities in Region D. 

 
Pre-integration differs from the standard distance-driven method because it integrates all of the data in each image slice 

or sinogram view before the projection or back-projection operation. The function P(X, Z) represents the 2D integral of 

the image intensities. See equation (3). 
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Integrating the data before the projection can substantially speed up the projection and back-projection operations. The 

sum of the intensities of any rectangular region of p(x,z) defined by the origin and a point (j,k) is equivalent to P(j,k). 

Note that linear interpolation is almost always required to find P(j,k) because j and k are likely not integers. Figure 3 

shows how this property is used to find the sum of the intensities of any rectangular region of p(x,z) [4]. 

 

 
Figure 3. The sum of the intensities in the shaded area of p(x,z) can also be calculated by using four linearly-interpolated points from 

the integrated data, P(X,Z), whose values represent the sum of p(x,z) from the origin to each point.  



 
Therefore, the sum of the intensities in the region of overlap can be calculated using the integrated data as shown in 

equation (4). 
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Unlike the overlap kernel of the traditional distance-driven technique, equation (4) can be calculated with code that does 

not contain branches. All threads perform the same memory operations although on different image coordinates. All 

threads also carry out the same arithmetic operations to determine the sum of intensities in a voxel-detector overlap. For 

these reasons, the use of pre-integrated data helps the distance-driven technique achieve optimal performance on GPUs.  

 
3. RESULTS 

 
In order to investigate the pre-integration method, a 32-slice GE LightSpeed CT system with a cone beam geometry was 

simulated. The 3D image volume has dimensions 𝑁𝑋, 𝑁𝑌, and 𝑁𝑍, which vary according to the experiment. A 64-bit 

Linux workstation with two 4-core Intel Xeon CPUs and an Nvidia Tesla K20 workstation graphics card was used. GPU 

performance was profiled using Nvidia Nsight within the Eclipse IDE. The pre-integration method was evaluated both 

for its GPU performance and for its impact on image quality. 

 
3.1 GPU Performance Results 

 
The GPU performance was measured for three versions of the distance-driven projector and back-projector: a single-

threaded CPU version, a version optimized for GPUs (called the “GPU-optimized” method), and the pre-integration 

version. The single-threaded CPU version of the distance driven projector and back-projector served as the baseline.  

 

The GPU-optimized versions of the projector and back-projector were written in CUDA and were highly optimized for 

the Nvidia Tesla K20. Private memory (in the form of registers) was used for the partial projection and back-projection 

sums in order to limit global memory transactions. However, using a large number of registers per thread meant that the 

threadblock size needed to be smaller in order to maximize the kernel occupancy. The image data was stored as a texture 

in order to take advantage of the texture caching on Nvidia GPUs. Finally, in order to get a high L1 cache hit rate on 

texture reads, the kernel was configured to prefer texture memory over local memory. This means that the GPU 

decreased the amount of local memory available in order to increase the amount of L1 cache available. The threads in the 

threadblock were also organized in order to maximize the spatial locality of the texture reads, further improving the L1 

cache hit rate.  

 

After optimizing it for the K20, the GPU-optimized projector and back-projector were enhanced with the pre-integration 

method. First, CUDA functions needed to be written to do the 2D integration of each image slice (for projection) or 

sinogram view (for back-projection). Then, the overlap kernel in the projector and back-projector were modified to use 

four linearly-interpolated points from the pre-integrated image or sinogram. 

 

For an image size of 𝑁𝑋 = 512, 𝑁𝑌 = 512, and  𝑁𝑍 = 48,  the projector and back-projector performance for the single-

threaded CPU versions, the GPU-optimized versions, and the pre-integration versions are all shown in Table 1. The table 

also combines the projection and back-projection performance for each to create an overall performance mark. The pre-

integration approach provides a 2x speedup over the GPU-optimized version for this particular system geometry and 

image size. 

 

Note that the pre-integration method requires all of the 2D slices in the image volume or all 2D views in the sinogram to 

be integrated in two dimensions before projection.  It also requires all 2D views of the sinogram to be integrated before 

back-projection. The integration times for the entire image and sinogram are twelve milliseconds and twenty 

milliseconds, respectively. These are shown in the rows labeled “Integration” in Table 1. Fortunately, these execution 

times are orders or magnitude smaller than the execution times for projection and back-projection. 



 
Table 1. Execution times for various methods of projection and back-projection. In this scenario, the 3D image volume has dimensions 

of 512x512x48. 

 

Operation 

Execution Time (seconds) Pre-Integration 

Speedup over 

GPU-Optimized 

Single-Threaded 

CPU 
GPU-Optimized Pre-Integration 

Integration - - 0.012 - 

Projection 162.7 1.98 0.61 3.2x 

Integration - - 0.020 - 

Back-Projection 162.5 2.30 1.49 1.5x 

Total 325.2 4.28 2.13 2.0x 

 
While this combination of image size and CT system geometry y it is important to note that the performance gain of the 

pre-integration method is dependent on the ratio of the detector cell size to the image voxel size. For example, Figure 4 

demonstrates that the pre-integration speedup for projection increases as the number of voxels in the image increases and 

the voxel size decreases. 

 

 
Figure 4. Projection execution times with and without pre-integration. For image volumes with fewer voxels, the pre-integration 

method is 2.5x faster than the GPU-optimized method. For image volumes with more voxels, the pre-integration method is 4.4x faster. 

 
The performance gain of the pre-integration method for back-projection is also dependent on the detector cell size and 

image voxel size. However, the result is not as advantageous. Figure 5 demonstrates that the pre-integration speedup for 

back-projection decreases as the number of voxels in the image increases and the voxel size decreases. Still, pre-

integration is at least 20% faster in all of the cases that we examined. 
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Figure 5. Back-projection speedup from pre-integration. For smaller image sizes (and thus larger voxels), the pre-integration method is 

5.3x faster than the GPU-optimized method. For larger image sizes (and thus smaller voxels), the pre-integration method is 1.2x faster. 

 
3.2 Image Quality Results 

 
It is important to note that the integration phase of pre-integration affects the numerical precision of the projection and 

back-projection operations. The absolute precision of floating-point numbers is lost as the magnitude of the values 

increase. Specifically, floating-point numbers of greater magnitude have less absolute precision than floating-point 

numbers of smaller magnitude. Because the values of an image or a sinogram are accumulated in the integration phase of 

pre-integration, the values being manipulated during projection or back-projection have greater magnitude than they 

would have without pre-integration. This leads to a loss of precision. However, this loss of precision does not necessarily 

have an impact on overall image quality. 

 

In order to determine whether the loss of precision affects image quality, the pre-integration method was tested within a 

regularized, iterative image reconstruction algorithm for cone beam CT from Jeffrey Fessler’s Matlab-based Image 

Reconstruction Toolbox (IRT) [5]. In order to run the CUDA projector/back-projector pairs within the IRT, they needed 

to be compiled as MATLAB Executable (MEX) programs.  

 

An image size of 𝑁𝑋 = 512, 𝑁𝑌 = 512, and  𝑁𝑍 = 48 was used in this experiment. A Penalized Weighted Least-Squares 

(PWLS) algorithm was chosen to evaluate the pre-integration and GPU-optimized projector/back-projector pairs [6]. The 

algorithm uses a Preconditioned Conjugate Gradient (PCG) method with a circulant pre-conditioner [7]. Three iterations 

of the algorithm were run. The true image was known because the input data came from ideal projections of the 3D 

Shepp-Logan phantom [8]. 
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Figure 6. Slices from image volumes created by the PWLS-PCG algorithm. The pre-integration projector and back-projector were 

used to create the slice on the left and the GPU-optimized projector and back-projector were used to create the slice on the right. The 

histogram has been stretched to enhance the visualization of the interior of the phantom. 

 
The results from both the GPU-optimized projector/back-projector and the pre-integration projector/back-projector were 

compared to the true image. A slice from the center of each of the difference images is shown in Figure 7. Visual 

inspection of the difference images shows that they are almost identical.  

 

 
Figure 7. True image minus pre-integration output (left) and true image minus GPU-optimized (right). The histogram has been 

stretched to enhance the visualization of the error. Both difference images show the same ring artifacts around the edges of the Shepp-

Logan phantom. 

 



4. CONCLUSIONS 

 
In this paper, a novel technique called pre-integration is proposed with the goal of speeding up distance-driven projection 

and back-projection in cone beam CT. In the distance-driven model, both projection and back-projection involve the 

overlap kernel in which the sum of the elements within a region defined by detector or image boundaries is computed. 

Although the overlap kernel accounts for a significant portion of the overall projection and back-projection execution 

time, it has seen very little optimization. The pre-integration technique seeks to minimize the amount of time the overlap 

kernel takes when executed on GPUs while maintaining the high image quality of the distance-driven model. It uses a 

pre-integrated image or sinogram to quickly get the sum of the intensities in a region defined by detector or image 

boundaries in a constant amount of time.  

 

The performance boost that pre-integration can deliver depends on the size of the CT detector and the image being 

reconstructed. GPUs perform at the highest level when memory accesses are limited. Using pre-integrated data for 

projections means that a constant, small number of global memory accesses are required. This can substantially reduce 

the number of reads needed. For example, images that have small voxels would typically require many reads to ascertain 

all values. Using pre-integration requires only four reads, even if the detector shadow falls upon tens of voxels. However, 

images that have larger voxels would not require as many reads in the traditional implementation. Thus, using pre-

integration would save fewer reads. The speedup that pre-integration offers for projection increases from 2.5x to 4.4x as 

the number of voxels in the image volume increases. Conversely, the speedup that pre-integration offers for back-

projection decreases from 5.3x to 1.2x as the number of voxels in the image volume increases. Still, both offer a speedup 

of over 4x for certain image sizes. 

 

The pre-integration method has an effect on the precision of the projection and back-projection results, and therefore 

could have an effect on the overall image quality. To investigate further, a regularized, iterative image reconstruction 

algorithm was used to compare the pre-integration projector/back-projector pair with a GPU-optimized projector/back-

projector pair. Images produced by the PWLS algorithm from Jeffrey Fessler’s IRT showed no differences between the 

pre-integration projector/back-projector pair and the GPU-optimized projector/back-projector pair. 
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