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Abstract

Dormant pruning is one of the most expensive, labor-
intensive, but, unavoidable procedure in the field of horti-
culture to ensure quality crop production. During winter,
skilled farmers remove certain branches that are connected
directly with the trunk of a tree carefully using a set of pre-
defined rules. In order to reduce this dependence on a large
manpower, our goal is to automate this pruning process by
building 3D models of dormant apple trees, which eventu-
ally would be fed to an intelligent robotic system.

In this paper, we present a semicircle fitting based robust
3D reconstruction scheme for modeling the trunk and pri-
mary branches of apple trees. The method involves estimat-
ing the diameter-error, creating semicircle fit model of the
tree from a single depth image, and reconstructing the final
3D model of the tree by aligning a sequence of depth im-
ages. Analysis of the qualitative as well as the quantitative
evaluations of our algorithm on five different dormant ap-
ple trees from our dataset under various indoor and outdoor
environments demonstrate the effectiveness of the proposed
framework for automatic 3D reconstruction. The results
show that on an average, the proposed schemes provide a
performance of 89.4% for correctly estimating the diame-
ters of the primary branches with a tolerance of 5§ mm and
100% for correctly identifying the branches.

1. Introduction

In recent years, automation of dormant pruning, which
involves cutting off certain primary branches (i.e., branches
that are connected directly to the trunk) of a tree for im-
proving the yield as well as the quality of crop production,
has emerged as an interesting research area. The process of
pruning a tree is not only expensive, time consuming, and
labor-intensive; but also requires a thorough knowledge of
the particular tree, and location of potential pruning points.
One of the major steps in automating this pruning process is
reconstructing 3D models of the apple trees with accurately

measured branch and trunk diameters. This issue is particu-
larly challenging due to several factors such as background
clutter, variable illumination conditions, complex tree struc-
tures, partial occlusions, close proximity of the consecu-
tively planted trees in the orchards, etc.

In this research work, we propose a novel method for 3D
reconstruction of the trunk and primary branches which ex-
ploits the fact that any cross-section of a dormant tree can
be reliably approximated by a semicircle due to inherent
cylindrical structure of the trunk and branches. The method
extracts 2D skeleton from the depth image of an apple tree,
creates cross-section around each vertex of the 2D skele-
tal structure, thus, dividing the depth images into several
cross-sections, and fits a semicircle on each cross-section.
Our algorithm repeats this process for several depth images
of the apple tree, taken from multiple viewpoints, aligns
their corresponding 3D point clouds, and employs incre-
mental as well as global approaches in order to accumu-
late all these data for the final robust reconstruction. We
also incorporate an empirical diameter correction model to
make our proposed approach even more robust and accu-
rate. The model empirically adjusts the calculated diam-
eter of a branch based on a study that concludes that the
branches that are present at greater depths from the sensor
would contain more error in their measurements.

The rest of the paper is organized as follows. In Sec-
tion 2, we review the current-state-of-art. In Section 3, we
describe our dataset and important parameters of our algo-
rithm. The preprocessing stages of our algorithm are then
discussed in Section 4. We explain the proposed framework
in Section 5. In Section 6, we evaluate the performance
of the algorithm on both indoor and outdoor trees, respec-
tively. Finally, Section 7 concludes the paper, and highlights
potential future works.

2. Related Works

Existing literature on geometric reconstruction and 3D
scene modeling is vast. In this section, we provide a brief
overview of the state-of-the-art of different 3D reconstruc-



tion methods of trees, specifically in the field of automatic
pruning. We also focus on the current state-of-art of Kinect
Fusion based approaches, which make effective use of depth
maps and point clouds for 3D reconstruction and modeling.

The research presented in this paper is based on the data
collected with a Kinect2 sensor using its KinectFusion soft-
ware [16]. Kinect has been chosen for its easy portabil-
ity and low cost; while providing comparable quality depth
images (at a very high frame rate of 30 fps) as of other ex-
pensive LASER sensors currently available in the market.
However, the raw depth images contain a lot of noise near
and on the edge pixels of the tree leading to inaccurate di-
ameter estimation of the branches. Thus in order to make
our approach more robust than the other traditional ap-
proaches [22, 25, 20, 21], we have used an empirical error-
correction model for accurate diameter measurements.

A key part in modeling tree structure is the segmenta-
tion of the captured data into branches. The segmentation
gives the topological tree structure, and the resulting seg-
ments (branches) can be then geometrically reconstructed.
Most of the existing approaches convert the raw depth data
to their corresponding 3D point clouds [5, 6, 7] for extract-
ing the tree skeletal structure. Skeletons can also be defined
using a neighborhood graph and checking the connected
components of the level sets of the graph [29, 9], and also
by voxelization and mathematical morphology [12, 1, 18].
We have skeletonized the tree structure directly from the
2D depth images using a Voronoi diagram based technique
[24], thus improving overall complexity of our algorithm.

Another integral part of our algorithm is the registration
of 3D point clouds to obtain the final richer reconstruc-
tion. Literature has addressed different methods to find the
full 6DOF scan alignment, such as joint optimization com-
bining visual features and shape matching [15, 14], over-
lap heuristic approach [31], semidefinite programming [8],
probabilistic approach [10] that takes into account the un-
certainty associated with displacement of the sensor and
the measurement noises, and many more [28, 4]. The most
important class of alignment algorithms has been based on
the Iterative Closest Point Algorithm (ICP) [2], a nonlinear
optimization problem in which correspondences between
images are approximated using the closest pairs of points
found between scans at the previous iterations. Though
computational complexity is still a concern, we have started
our registration process with this reliable alignment algo-
rithm, and have achieved pretty good results.

In the past few decades, 3D scene reconstruction has re-
ceived immense attention from the researchers. The current
state-of-the-art [32, 23] as well as the KinectFusion based
approaches attempt to solve this problem without impos-
ing any constraint on the object in the scene, thus result-
ing in inaccurate modeling for challenging real-world ap-
plications — such as 3D reconstruction of trees for dormant

pruning. Many of these methods [1, 18, 30] employ gen-
erative branching rules, which may result in inaccurate re-
construction for complex tree structures in the absence of
large number of hypotheses. These methods do not ac-
count for the fact that the trees are predominantly cylin-
drical in structure, and using this information may lead to
simplification of the tree structure. The other classical ap-
proaches [19, 11] estimate the tree model without taking
into consideration important information — such as erro-
neous diameter-measurements of the cross-sections.

In [19], Livny et al. have utilized graph-structure based
geometric attributes of the tree skeletal structure for auto-
matic reconstruction of non-dormant trees, which itself is a
difficult problem to solve for complex tree structures. More-
over, it mainly aims at reconstructing the major branches of
the trees, and then sample the leaves randomly. In [11],
the focus is on merging the point clouds corresponding to
the front and the back sides of the tree, based on geometric
attributes. Although the work in [11] also proposes a cir-
cle fitting based reconstruction scheme, it does not take into
consideration a number of distortions present in the data ac-
quisition system. The novelty of the work presented in this
paper lies in proposing a framework that aims at 3D recon-
struction of apple trees by taking into account the erroneous
diameter measurements along with utilizing the predomi-
nantly cylindrical structure of trees. This paper also focuses
on resolving a number of issues that cause distortions in the
estimated parameters of the fruit tree. More importantly,
although in this method we also extract the skeleton of the
tree, and model the trunk and branches using circles, we
do so using more robust approaches. Instead of fitting cir-
cles to the trunk and branches after merging the point clouds
corresponding to both sides as in [11], we fit semicircles us-
ing separate views, and correct their diameters based on an
empirical diameter calibration mechanism.

To this end, we highlight the novelties of this paper.
Firstly, we propose a new semicircle fitting based frame-
work for robustly reconstructing dormant apple trees in 3D
space using sequence of depth images. Secondly, we ex-
ploit a new error correction model that accurately estimates
the diameter of each cross-section of a tree — even when
the data is noisy. Lastly, we publish a new dataset consist-
ing of several dormant apple trees collected from various
orchards.

3. Dataset and Implementation Details

In Section 3.1, we explain our dataset of dormant apple
trees as well as the data acquisition procedure. In Section
3.2, we discuss about the important parameters of the pro-
posed framework, and describe the metrics used to evaluate
the performance of our algorithm in Section 3.3.



3.1. Dataset and Data Acquisition

We use five trees from our dataset! collected from differ-
ent orchards for testing. Out of these trees, there is an indoor
laboratory tree namely, Indoor 1; while the other four trees
are obtained from actual fields, namely, Outdoor 1, Outdoor
2, Outdoor 3, and Outdoor 4. For training, we use a different
tree from our dataset, namely, Indoor 2. For each tree, we
collect three types of information, namely, Depth images,
Labeled images, and Groundtruth measurements.

3.2. Parameter Tuning Scheme

The performance of our algorithm depends on three im-
portant parameters, namely, Depth Threshold (7), Similar-
ity Metric between a pair of 3D point clouds, and Distance
Threshold. Depth Threshold (7) is required to set a bound-
ing box on the object that is being reconstructed (as dis-
cussed in Section 4.1). We use 7 to define the maximum
depth beyond which all the depth values in the depth im-
age are set to zero. The value of 7 should be altered de-
pending upon the position of the object from the sensor. In
our experiments, we set the value of 7 between 1m and 2m
for different trees. Similarity Metric (explained in Sec-
tion 5.2) is used to measure the similarity between a pair of
aligned point clouds by employing some distance measures.
Only those depth images are used for the final reconstruc-
tion which satisfy the pre-defined similarity criteria. Dis-
tance Threshold (o) refers to the distance from the sensor
center to the tree trunk. In our experiments, we use o equals
to 1.5m for indoor, and 1m for outdoor trees, respectively.

3.3. Evaluation Metric

To quantitatively measure the performance of our ap-
proach, we use two metrics, namely, Branch Identification
Accuracy and Confidence Value. Branch Identification
Accuracy (BIA) indicates the accuracy of modeling the pri-
mary branches [18]. It is computed as the percentage of the
detected branches verified to be true over the actual num-
ber of ground truth branches of the tree. Confidence Value
shows the percentage of the primary branches whose Esti-
mation Error - calculated based on the absolute difference
between the groundtruth diameter (obtained using caliper)
and the estimated diameter - are within a certain threshold
value e.

4. Preprocessing a Tree Using Its Depth Images

In this section, we describe the preprocessing functions
required for the sensor’s raw data in order to make them eas-
ier to analyze within the proposed 3D reconstruction frame-
work. Hence, the main topics addressed in this section are

IThe dataset is now publicly available at https://
engineering.purdue.edu/RVL/WACV_Dataset

as follows. Section 4.1 discusses the necessary noise fil-
tering procedure required to enhance the quality of the raw
images, and Section 4.2 describes the skeletonization of tree
structure. Section 4.3 explains the procedure of estimating
centers and radii information required for fitting semicircle
models of the 3D point clouds of a tree. Finally, Section
4.4 describes an empirical approach that models the errors
between the calculated diameters of the primary branches
obtained from the sensor’s data and their corresponding
groundtruth measurements. Fig. 1 highlights the overall
preprocessing framework.

4.1. Filtering Noise from Raw Depth Images

One major challenge in accurate 3D reconstruction of the
dormant apple trees is the presence of noise in the raw depth
images, especially around the edge pixels of the tree. Thus,
preprocessing becomes a crucial stage of our proposed al-
gorithm. These operations include lens distortion removal,
background subtraction, and filling up the gaps present in
the raw data. A clean depth image after preprocessing stage
is shown in Fig. 1(c).

Removal of Lens Distortion: To remove lens distortion
that affects the accuracy of the reconstruction [17, 27], we
calculate its parameter vector k by calibrating the camera,
as in [26]. Subsequently, the undistorted depth map can be
obtained as follows:

2kszy + ka(r® + 222)

X, = k3(r? + 2y2) + 2kqxy
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Where X = (z, y) is the input depth map, X; is the tangen-
tially undistorted map, X, is the radially and tangentially
undistorted map, 12 = 2% +y?, and k = (ky, kg, k3, k4, ks)
is the parameter vector, where k1, ko and k5 are the radial
distortion parameters; while k3 and k4 are the tangential
distortion parameters.

Background Clutter Removal: Apart from lens distor-
tion, raw depth images also contain a lot of clutter in the
background that needs to be removed. For this purpose, we
segment the foreground object from the background clut-
ter by thresholding the pixel values of the depth image that
are greater than a certain threshold (7 meters) to zero (see
Section 3.2 for details).

Filling Up the Internal Holes: Finally, we apply mor-
phological operations to fill up the small gaps present in the
raw depth images, and eliminate the bays along the bound-
aries. We basically perform a closing operation, where the
depth image A is first dilated, and then eroded with an all-
one 3 x 3 structuring element B as follows:

AeB=(A®B)oB 3)

Where & and & denote the morphological operations, dila-
tion and erosion, respectively.
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Figure 1: Preprocessing Framework

4.2. Extracting 2D Skeletons from Depth Images

After cleaning up the raw depth image, we extract its
skeleton by employing a Voronoi Diagram technique, as in
[24]. We provide the depth image D of a tree to the skeleton
extraction algorithm F', and obtain the skeleton nodes S as
well as their interconnections C' (shown in Fig. 1(d)).

[5,C] = F(D) )

Finding the Edge Points of a Skeleton Node: Once we
have extracted the 2D skeleton nodes and the interconnec-
tions between them, we aim at finding the edge points, in-
dicated as p; and p, in Fig. 2 (a), that surround a skele-
ton node of the primary branch. In particular, for each pair
of connected nodes in the skeleton forming a skeleton seg-
ment, we find the orientation of the skeleton segment by cal-
culating the dominant direction d between a pair of skeleton
nodes, s; and ss, as follows:

(1 — 22, Y1 — Y2)
\/(1'1 —22)% + (y1 — y2)?

Where (z1,y1) and (z2,y2) are the pixel coordinates of a
pair of skeleton nodes, s; and s, as shown in Fig. 2(a).

d:

®)

To this end, we refer to the region, that surrounds a par-
ticular skeleton node, and is bounded by its edge pixels,
as the cross-section of the skeleton node. It is important to
note that in the extracted 2D skeleton images, it is extremely
difficult to distinguish between the overlapping branches.
Based on empirical calculations, any pair of skeleton nodes
whose 3D coordinates are more than 3 cm apart are treated
as disconnected.

4.3. Constructing Semicircle Model of the 3D Point
Cloud of a Tree from its Depth Image

Towards this direction, next we estimate the diameter
and the center parameters of a cross-section.

Estimating the Diameter of a Cross-Section: We look
for the edge pixels along the normal direction dporm Of the
dominant direction d. We compute dporm as follows:

d-dporm =0 (6)

For each skeleton node, we obtain a pair of edge points.
We describe the procedure for finding an edge pixel that
corresponds to a skeleton node in Algorithm 1.

After obtaining the edge pixels corresponding to a skele-
ton node, we use Equ. (10) to calculate the diameter D¢ of



Figure 2: We show in (b) the depth image of a tree with its
2D skeleton superimposed, and a cross-section of the tree
is highlighted with a green rectangle. The highlighted seg-
ment in green is magnified in (a) displaying edge pixel com-
putation.

Algorithm 1 Edge Pixel Extraction algorithm

Step 1: Initialization

1) Input a single depth image, D.

2) Set a threshold = ¢.

3) Initialize a counter, 7 = 1.

4) Compute dominant direction d between two skeleton
nodes, (s1, s2), using Equ. 5.

5) Compute a direction, dporm, perpendicular to d using
Equ. 6.

Step 2: Finding an Edge Pixel (p;) of a skeleton node
(s1)

6) Compute p; = p1 + ¢ * dporm, Where p; is the edge pixel
computed by moving in a direction dpory from s;.

7) Compute Euclidean distance, dist, between the skeleton
node s; = (x1,y1) and edge pixel p;.

8) Increment <.

9) Repeat Step 2 until D(p;) is not zero and dist < ¢.

its cross-section. Next, we apply the “diameter-correction
model” discussed in Section 4.4 on D¢ in order to estimate
the actual value of the diameter (D 4) at that particular node
with depth value d = p using (11). Finally, we obtain the
radius of a cross sectionrasr = D 4 /2.

Estimating the Center of a Cross-Section C: We ba-
sically estimate C as follows:

C=p+rv 7

Ssp(n) = uK '8, (8)
SgD (’I’L)

S AN 9
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Where S, is the n*" skeleton node with a depth value g,
K is the camera intrinsic matrix, Ssp(n) is the 3D point
corresponding to S;, and v is the Kinect Observation Vector

(KOV) at S,,. Fig. 1 (f) displays the centers (shown in blue)
fitted around the tree point cloud (shown in red).
Constructing Semicircle Model of the 3D Point Cloud
of a Tree from its Depth Image: Once we estimate C, we
use it along with the dominant direction d, the observation
vector v, and the radius r to obtain the optimized semicircle
points (shown in blue in Fig. 1 (g)), as in [13], with an arc
angle « that ranges from —7/2 to 7/2. The final model
provides the centers, radii, kinect observation vectors, and
normals associated with each cross-section of the tree.

4.4. Diameter-Correction Model for Errors Ob-
tained from Depth Images

Kinect sensors do not capture points that lie near the edge
of the trunk and primary branches in the depth images. Con-
sequently, there exists some errors between the groundtruth
measurements of the diameters of the primary branches
(D 4) and their corresponding diameter-measurements cal-
culated from the depth image D¢. To measure D 4 of a tree
cross-section we use a caliper, and we calculate its corre-
sponding D¢ value from the depth image as follows:

d
D¢ = ?||p1 — pa| (10)

Where d is the depth value at the center of a cross-section,
f is the focal length of the sensor, and p; and ps are two
edge points of the cross-section.

To model the error between D¢ and D4, we examine
various cross-sections of a tree under different depth dis-
tances from the sensor. In particular, for each cross-section
we record the depth value of its center pixel as well as the
ratio between D¢ and its corresponding D 4. In Fig. 1(e),
we show the ratio values between D¢ and its correspond-
ing D 4 (on the y-axis) under varying depth values (on the
x-axis). It is observed that the ratio between D¢ and D 4
remains unchanged for varying number of samples; thus,
confirming the robustness of the empirical model. From the
figure, it can be inferred that as depth value increases, the
error between D¢ and D 4 increases. To this end, we fit a
linear model on the collected data, indicated in Fig. 1(e), as

follows: D
ZC _ —0.95d + 1.6 (11
Dy
Next, we will use the obtained “Diameter-Correction
model” to estimate the actual diameter value of a semicircle.

5. 3D Reconstruction of a Tree from its 3D
Point Clouds

In this section, we provide a detailed explanation of the
proposed framework for obtaining the 3D reconstruction of
dormant apple trees. In particular, Section 5.1 describes the
process of obtaining and aligning the 3D point clouds of a
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Figure 3: Alignment framework of a point cloud pair for the tree ‘Indoor 1’

tree from its depth images. In Section 5.2, we discuss the
proposed scheme for merging the aligned point clouds of a
tree to obtain the final 3D reconstruction.

5.1. Alignment of 3D Point Clouds

The first step in the alignment process is to obtain the
3D point clouds (Fig. 3(c)) from the depth images (Fig.
3(a)) of a tree. Towards this direction, we first extract rel-
evant feature points from the depth images of the tree, and
then find reliable and robust corresponding feature points
between consecutive pair of depth images. In particular,
we use a combination of Scale Invariant Feature Transform
(SIFT), Hough Transform, and RANSAC to extract the fea-
tures, and find the corresponding matching points in a pair
of depth images, as in [3]. An example illustration is shown
in Fig. 3(b). Next, we convert the pair of depth images to-
gether with their matched features to obtain the correspond-
ing 3D point clouds, as in [16], based on the following equa-
tion:

V(u) = D(u)K 'u (12)

Where u = (z,y, 1) is an image pixel in the homogeneous
coordinate system with a depth value D (u), K is the camera
intrinsic matrix, and V is the output 3D point cloud.

The goal now is to align the 3D point clouds in order to
obtain the final 3D reconstruction of the tree. To align a pair
of 3D point clouds, we use the Iterative Closest Point (ICP)
algorithm [33] which takes a pair of point clouds V; and V;
as input, and returns the rigid transformation that best aligns

them, as follows:
[R,T] = ICP(V;,V;j) (13)

Where R and T are the rotation and translation matrices.

An initial alignment between the two tree point clouds,
V; and Vj, is obtained by applying ICP on the point clouds
of only the matched pair of points, M; and M;. ICP gen-
erates a homography between the matched points, M; and
M;, giving us an initial estimate of the transformation,
[Rinit|Tinit], between Vj and V;j.

Once we have an initial alignment between the point
cloud pair, we rotate and translate V; by R;,;+ and T}, to
obtain a transformed Vj, referred to as V}. Next, we reapply
ICP on V} and V; to get a more robust alignment, [R|T7].
The final alignment, V\i, can then be obtained by transform-
ing Viby R ¢ and T, and get its mapping in the space of
V;, as shown in Fig. 3(d).

5.2. 3D Reconstruction of a Tree from its Aligned
3D PointClouds

To obtain the final 3D reconstruction of a tree, we merge
a pair of aligned point clouds based on two alternative
techniques, namely, Incremental Model (IM) and Global
Model (GM). In both approaches, we start first with a pair
of 3D point cloud pair (V;, Vj), then we transform V; to the
frame of Vj, and measure the similarity and diversity be-
tween the pair of aligned point clouds based on distance
metrics. In our framework, we use the Jaccard Similar-
ity Index (J) as our similarity metric as it varies over a



(Tree ID, Number of Depth Images)

Incr

Global Medi:

KinectFusion

| Approach

Approach

Global Mean Approach

€=3mm

€=5mm

€=7mm

BIA (%)

€=3mm

€=5mm

€=7mm

BIA (%)

€=3mm

€=5mm

€=7mm

BIA (%)

€=7mm

BIA (%)

(Indoor 1, 30)

55.5

718

77.8

100.0

333

55.5

88.9

100.0

66.7

78.8

88.9

100.0

100.0

(Outdoor 1, 32)

85.7

85.7

100.0

100.0

85.7

100.0

100.0

100.0

85.7

100.0

100.0

100.0

100.0

(Outdoor 2, 33)

66.7

833

83.3

100.0

833

833

100.0

100.0

83.3

833

833

100.0

833

(Outdoor 3, 29)

50.0

100.0

100.0

100.0

25.0

50.0

75.0

100.0

25.0

25.0

75.0

100.0

100.0

(Outdoor 4, 51)

60.0

100.0

100.0

100.0

60.0

100.0

100.0

100.0

60.0

100.0

100.0

100.0

100.0

Mean

63.6

89.4

92.2

100.0

57.5

77.8

92.8

100.0

64.1

71.4

89.4

100.0

96.6

Table 1: This table displays the confidence values (%) in measuring the diameters with estimation error less than e. For each
tree, the branch identification accuracy (BIA %) using all the evaluated approaches is also provided.

Algorithm 2 3D Reconstruction of a tree using Incremental
and Global approaches

Step 1: Initialization

1) Seti = 1,5 = 2; where 7 and j are the indices for the
previous and current point clouds as well as depth images.
2) Initialize Vine = Y1, Ygiobal = Y1. Yine, the final 3D
model using IM, is initialized to the semicircle fitted model
of the first depth image. 1)4i0pq: contains the semicircle
fitted models of all the similar 3D point clouds in the se-
quence. Ygi0bq; contains only v in the beginning.

Step 2: Basic Operations

1) Convert D; and D; to V; and V. D; and D; represent
2D depth images. V; and V; are the corresponding point
clouds.

2) Transform Vj to the frame of V;.

3) Measure similarity between transformed V; and V.

4) If similar = TRUE, build model ;. If Incremental, go
to Step 3, and if Global, go to Step 4.

5)If similar = FALSE, discard D;, and increment j.

Step 3: Incremental Approach

1)Transform ;. to the frame of V;.

2) Save ;. = Transformed ;.

3) Update v;,,. = average ({inc, 1;), and increment 4, j.

4) Repeat Steps 2 & 3 until all the depth images in the se-
quence are visited.

Step 4: Global Approach

1) Save model ©;, Ygiobar = {Vgiobai, V;}-

2) Save transformation, and increment i, j.

3) Repeat Steps 2 & 4 until all the depth images in the se-
quence are visited.

4) Find m = length(¥giobq), and transform tgiopai(1),
¢global(2), ...... s wglobal(m — ].) to the frame of 1/)global(m).
5) Create the final model by taking mean (G Mg.4) or me-
dian (GM,,.q) of all the transformed point clouds.

larger range making it easier to discriminate the aligned
point clouds. In case V; and Vj,q are not similar, we dis-
card Vj,1, and examine the next point cloud in sequence.
On the other hand, if a pair of aligned point clouds is sim-
ilar, in IM we fit a semicircle model (¢, ;) of the point
cloud pair, and compute their average model 1,,,.. Then,
we align V; with the next point cloud in sequence, Vj,q, in

an incremental manner, whenever similarity criteria are sat-
isfied. In particular, we measure the similarity between the
transformed V; and Vj.y, map v, . to the frame of Vj,q,
compute the average of transformed ;. and 1,1, and
update the previous average model. The incremental ap-
proach is described in Step 3 of Algorithm 2. In GM, we
fit the semicircle model (v;,;), and store it in a holistic
model (denoted as 1) g;0pq1). We repeat the same process for
(wja wj-ﬁ-l)a and store wj+1 in wglobal' To this end, wglobal
contains the semicircle models of all the point clouds that
satisfy the similarity criteria. To obtain the final reconstruc-
tion, we map the obtained models to the frame of last point
cloud following a daisy chaining approach. In particular,
we form the final 3D model of a tree either by computing
the median of all the transformed point clouds (denoted as
G M neq) or by averaging the models of the aligned point
clouds (denoted as G M,.4). We highlight the entire pro-
cess in Step 4 of Algorithm 2.

6. Experimental Results

In this section, we evaluate the proposed 3D reconstruc-
tion framework on each of the 5 test trees, mentioned in
Section 3.1. We also compare our results with those ob-
tained using the KinectFusion approach, as a baseline. In
first row of Fig. 4, we demonstrate a groundtruth image
of the tree ‘Indoor 1°, and the final 3D reconstructions us-
ing IM, GM, and KinectFusion based approaches. Same
results for the tree ‘Outdoor 1’ have been provided in the
second row of Fig. 4. Moreover, Table 1 shows the quanti-
tative results of the proposed approaches. In particular, it is
observed that the BIA metric for both the incremental and
the global approaches provide a 100% for reconstructing
branches of all the trees in the dataset. On an average, the
proposed approaches allow us to successfully detect about
100% of the original tree branches. This indicates that in
most scenarios, we can reconstruct all branches of the trees.

Moreover, quantitative evaluations of the diameter esti-
mation accuracies show that the global and the incremental
approaches significantly outperform the KinectFusion ap-
proach under different tolerances. On an average, we can
estimate the diameters of the primary branches of all trees
with confidence values of 77.8% and 92.8% (using the
global median approach), and 89.4% and 92.2% (using the



(e) Outdoor 1 (f) Incremental

(g) Global

(h) KinectFusion

Figure 4: The first row shows the ground truth images of the tree ‘Indoor 1°, its 3D reconstruction using Incremental Model
(IM), Global Model (GM) and KinectFusion (KF). The second row displays the same for the tree ‘Outdoor 1°.

incremental approach) for tolerances of 5§ mm and 7 mm,
respectively. Taking all criteria into consideration, we con-
clude that the incremental approach is the best choice as it
outperforms the other approaches for reconstructing all the
trees in our dataset.

7. Conclusion and Future Work

In this work, we present a new method that aims at accu-
rate 3D reconstruction of the trunk and primary branches of
dormant apple trees based on an efficient semicircle fitting
algorithm using a sequence of depth images. The proposed
approach also allows us to estimate the diameter of a pri-
mary branch using a novel empirical model. The method
has been tested on several trees under various indoor and
outdoor environments for both qualitative and quantitative
evaluations, and the results look promising. Our experi-
ments show that the proposed method gives a better esti-
mation of the diameters when compared with the results of
KinectFusion. On an average, the results allow us to accu-
rately estimate the diameters of 89.4% of primary branches
within an e value of 5§ mm. We can also identify the
branches of the trees in our dataset with 100% accuracy.

In the future, we plan to extend the empirical error model
in order to account for possible variations in both illumina-
tion and primary branch thickness. For that purpose, we
would be including depth as well as color information of
the images. We would also work towards designing a more

robust evaluation metric which can handle the presence of
false positives and false negatives in our final reconstruc-
tion results. We also plan to improve the computation time
of our algorithm by employing parallelization.
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