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Abstract. Several visual following robots have been proposed in recent
years. However, many require the use of several, expensive sensors and
often the majority of the image processing and other calculations are
performed off-board. This paper proposes a simple and cost effective,
yet robust visual following robot capable of tracking a general object
with limited restrictions on target characteristics. To detect the objects,
tracking-learning-detection (TLD) is used within a Bayesian framework
to filter and fuse the measurements. A time-of-flight (ToF) depth camera
is used to refine the distance estimates at short ranges. The algorithms
are executed in real-time (approximately 30fps) in a Jetson TK1 embed-
ded computer. Experiments were conducted with different target objects
to validate the system in scenarios including occlusions and various il-
lumination conditions as well as to show how the data fusion between
TLD and the ToF camera improves the distance estimation.

1 Introduction

Target tracking using mobile robotic platforms is a well-researched problem
within the computer vision and robotics communities [1,2,3,4,5,6,7]. Object fol-
lowing capabilities are increasingly popular for aerial platforms and wheeled
vehicles alike [8,9,10,11,12]. Object/target following is typically an extension of
target tracking in the sense that the tracking error is used as input to a controller
that changes the position of the robotic platform with respect to the target.

In this paper, an autonomous, low-cost, computationally light target fol-
lowing platform is presented. The platform consists of consumer grade portable
hardware and uses visual information only to estimate the relative position of the
robot and generate the corresponding control signals. Specifically, the platform
is comprised of an iRobot Create 2 mobile robot, a Creative Senz3D camera,
and an Nvidia Jetson TK1 embedded computer. The proposed system is flexi-
ble since it imposes no constraints on the shape or color of the target. This is
accomplished using the tracking-learning-detection (TLD) [13] algorithm for ob-
ject detection. The output of the object detection algorithm, in addition to the
depth information from the 3D camera, is used as a measurement for a standard
Kalman filter which effectively tracks the target through the image sequence.
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2 Related Work

There has been significant interest in robotic platforms for object or pedestrian
tracking and following. The design of such platforms usually involve three main
elements: 1) a tracker that is flexible enough to detect and follow different types
of targets, 2) an on-board computing system that is able to perform intensive
computer vision operations in real-time, and 3) a robust depth estimation mech-
anism. We discuss each of these elements in more detail below.

Vision-based tracking algorithms for robotic platforms must be flexible such
that only a limited amount of information about the target must be known a
priori. They must also be robust enough so that the platform can keep track of
the target under a variety of conditions. Many existing platforms rely on defining
some kind of ‘unique identifier’ for the system to detect and track. This could be
as simple as a specific color or shape [7,8,9,10,14,15,16,17] or as intricate as using
known markers such as LEDs attached to the target [18]. Although a certain level
of robustness can be obtained by such approaches as long as the assumptions
on the appearance of the target and the background are not violated, they lack
the flexibility needed to make such systems practically useful. Flexibility can
be obtained by relying on discriminative trackers that can be initialized with
a target appearance at time t0 and then updated on-the-fly [13,19,20]. These
trackers can be endowed with additional robustness by integrating them with
recursive Bayesian estimation methods that can effectively limit the number of
opportunities for the algorithms to make mistakes [21,22,23,24].

Regarding the availability of on-board processing capabilities, image process-
ing is notoriously computationally expensive, especially for high resolution im-
ages. In many robotic tracking systems, image processing is performed remotely,
off-board [4,8,10,16,12] due to the lack of on-board processing power. There are
only a few systems that present truly autonomous vehicles that perform all the
processing on-board. For example in [5] a low-cost FPGA is used to increase the
efficiency and speed of the image processing algorithms. FPGA-based systems
are, however, intrinsically less flexible than general computing architectures and
cannot, in general, benefit from the widespread dissemination of algorithms de-
signed for general graphics processing units (GPUs). The advent of low-power
embedded architectures with integrated GPUs, such as the Nvidia Tegra TK1
SOC1, made it possible for these highly parallel algorithms to make their way
into low-cost robotic applications.

The third major issue in the design of portable target following robotic sys-
tems is the availability of appropriate depth estimation mechanisms. Depth in-
formation is vital for the platform to maneuver in three dimensions and success-
fully follow a target. Although estimating the distance between the target and
the robotic platform based on scale variations of the target is a viable option,
such approach tends to be fragile in the presence of relatively small errors in the
estimated target boundaries. Alternative sensing technologies can be employed
in conjunction with traditional vision-based depth estimation to mitigate this

1 http://www.nvidia.com/object/tegra-k1-processor.html
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problem. Over the past few years, RGB-D sensors have been widely used for that
purpose [8,25,26,27]. The ideal depth sensor needs to provide sufficient RGB im-
age resolution and depth information at a feasible cost. Although structured light
sensors tend to perform well in indoors applications, their performance under
natural illumination suffers. Sensors based on time-of-flight (ToF) technology,
although still not immune to illumination problems, tend to perform better.

Few autonomous target following systems [2,28] are flexible enough not to
require ‘unique identifiers’, efficient enough to perform all processing and con-
trol operations on-board, and incorporate depth information for robust target
following performance while using relatively low-cost consumer grade hardware.
Similar systems to the one presented in this paper have been proposed, how-
ever, some make use of large robotic platforms [2], expensive sensors [28], or
unreliable sensors [15], and may not be as robust as one based on a Bayesian
framework [17]. Therefore a low-cost, computationally light, robust vision based
control system for an autonomous vehicle is still subject of active research.

3 Proposed Vision-based Target Following System

This section describes the design of the proposed platform as well as the methods
used to estimate the target position and to control the robot.

3.1 System description

The system is composed of the following hardware: A Creative Senz3D ToF
camera that is able to capture an RGB and depth image. The camera has a
depth range of approximately 1m and generates range images at 30fps.2 A
Jetson TK1 embedded computer is attached to the iRobot Create 2 in order to
process the information collected from the camera and send control commands
to the robot. See Figure 1 for an illustration of the overall system (the cost of
the components for one prototype was approximately 500 US dollars).

Fig. 1: Overall robotic platform architecture.

2 Although other ToF cameras such as the classic SR4000 from MESA imaging, the
PMD CamCube 3.0 or SoftKinetic’s DS536A have ranges of up to 5m, the low-cost
and lightweight Senz3D was deemed sufficient for our purposes.
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3.2 Target detection

In order to measure the position of the target at each frame, the system uses
a C++ implementation of TLD [29] which computes the target position in the
image plane (u and v) as well as its width and height (w and h). TLD is used
because it is a discriminative tracker and hence does not require previous infor-
mation about the target, which gives the system the flexibility needed to track
any object of interest. The target is initially selected by the user and variations
on target appearance are learned as it is tracked.

3.3 System model

The system is modeled using a linear Kalman Filter. The state vector is x = [u
v z u̇ v̇ ż], where u, v are the pixel coordinates of the object, z is the distance
from the sensor to the object, and u̇, v̇, ż are the velocities in each dimension,
respectively. The object tracking system is then modeled in state space form as:

x(t) = Ax(t− 1) +Bu(t) +w(t) (1)

y(t) = Cx(t) + v(t) (2)

where Eq. (1) represents the system dynamics, including the state transition
matrix A, the influence of the control action B and the process noise w, and
Eq. (2) is the measurement model, which includes the observation matrix C

and the measurement noise v. The process noise and measurement noise are
assumed to be white, Gaussian, with variances Rww and Rvv, respectively. That
is, w ∼ N (0, Rww), and v ∼ N (0, Rvv).

The object tracking system is modeled with the following state transition
and measurement matrices:

A =

[

I3 I3

03×3 I3

]

, B =











02×3

k1 0

0 0

0 k2











, C =

[

I2 02×2 02×2

02×2 12×1 02×3

]

(3)

where Im is a m×m identity matrix and 0m×n and 1m×n are m×n matrices of
zeros and ones, respectively. Matrix A above assumes that the target moves with
a constant velocity such that u̇(t) = u̇(t− 1), v̇(t) = v̇(t− 1) and ż(t) = ż(t− 1)
∀(t). Matrix B accounts for the effect of the control action of the PID controller
on the velocities of the x and z axes. The rotation of the robot is accomplished by
controlling the displacement in the image ∆u, this relationship can be considered
θ ≈ ∆u since the displacement from one frame to another is small in comparison
to the distance between the robot and the target (see Figure 2). Translation is
carried out by attempting to preserve the relative distance between the robot
and the target at the first instant of time. The C matrix indicates that the
measurements available at any given time are the current u, v coordinates of the
object (the output of TLD) and z, the range from the robot to the object, which
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is obtained from both the ToF camera and TLD. Matrix C is a 6 × 4 matrix
whose first two rows correspond to the observations of u and v provided by TLD
and whose last two rows correspond to the distance measurements obtained by
the ToF camera and by the relative scale computed using TLD. The data fusion
between the TLD and ToF measurements will be covered in detail below.

Fig. 2: Small angle approximation justification.

3.4 Data fusion approach

There are two main purposes for fusing measurements in this system. The first
is to increase the overall estimation accuracy. The second is to allow the robot to
follow a target even when it goes beyond the threshold of the ToF camera. The
ToF camera is able to measure depth consistently and precisely when a target is
located less than 1m away, however, it becomes very noisy and unreliable beyond
this distance, generating many false measurements. A depth estimate based on
relative scale changes as measured by TLD is used to compensate for these false
measurements, effectively extending the operating range of the system.

The depth measurement from the ToF camera is calculated by averaging all
the non-zero depth pixels inside the target bounding box (pixels whose depth
cannot be estimated, such as those beyond the camera range, are read with a zero
value). The height and width (h and w) provided by TLD are used to measure
the scale variations of the target and hence provide an indirect depth estimate.
The scale change of the target is translated to a real distance according to

TLDz = Kz.

√

wimg × himg

w × h
(4)

where Kz is a constant obtained by relating the initial depth measurement from
the camera to the initial target bounding box size (w and h) and himg and wimg

are the height and width of the image.
The reliability of the ToF depth measurement is determined according to the

following sigmoidal relationship

Rvvζ = 1−
1

1 + e(η×r0−ζ)
(5)
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where r0 is the percentage of zero elements in the target bounding box image, η
defines the slope of the function and ζ is the value where the penalization takes
place. The sigmoid function allows the Kalman filter to smoothly transition
between the ToF and the TLD distance measurements using the following 4× 4
covariance matrix

Rvv = diag(Rvvu , Rvvv , RvvToF , RvvTLD) (6)

where diag(.) represents a diagonal matrix, Rvvu
and Rvvv

reflect the uncer-
tainties in the observation of u and v and RvvTOF and RvvTLD represent the
distance uncertainties as computed by the ToF camera and the TLD scale and
are defined as follows

RvvTOF = κ×Rvvζ (7)

RvvTLD = κ× (1−Rvvζ) (8)

Hence, as Rvvζ
varies, the confidence level of the system is adjusted so that

more weight is given to the ToF measurements or to the TLD relative scale. κ
represents the penalization amplitude in the sigmoid function.

3.5 Controller design

Independent PID controllers are used for the translational and rotational veloc-
ities of the robot. As shown in Figure 1, the translational velocity allows the
robot to drive forward or backward, and the rotational velocity turns it to the
left or to the right.

The set-point for the translational controller is the initial distance between
the target and the robot in the first measurement. We require this distance to
be within the range of the ToF camera so that the TLD scale measurement
can be properly initialized. The PID constants for the rotational controller are
Kp = 0.82, Ki = 0 and Kd = 0. The set-point for the angular controller is the
center of the image in the x axis. The constants for this controller are Kp = 0.4,
Ki = 0 and Kd = 0.03. All the controller constants were found experimentally
so that the robot would show a fast yet smooth response.

In order to decouple the control actions, we implemented a simple heuristic
that checks for the magnitude of the error in the set points and decides whether
to move forward or to turn at each frame based on the largest error. That is,
if the difference between the u coordinate of the target and the corresponding
set point in the center of the image is larger than the difference between the
radial distance from the target to the sensor and its corresponding set point, the
rotation controller is activated. Otherwise, the translation controller is activated.
In order to be able to compare these distances, they are both normalized so that
they range between 0 and 1.

4 Experimental Results

We qualitatively evaluated the ability of the system to track a given target by
attaching an object (recycling bin) to another iRobot Create 2 which was man-
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ually controlled while the autonomous robot followed it successfully through
a variety of conditions. A sketch of the map illustrating the trajectory of the
robot is shown in Figure 3. As the figure shows, the system autonomously fol-
lowed the target for approximately 110m. Screen captures obtained by the robot
during this experiment are shown in Figure 4. The parameter values used for
the experiments are the following: ζ = 12, η = 20, κ = 100, k1 = k2 = 0.01,
Rww = diag(0, 0, 0, 0.1, 0.1, 0.1), and Rvvu

= Rvvv = 0.3.
In order to evaluate the ability of the system to recover from full occlusion

while still carrying out smooth depth estimation, we tracked a target object
(recycling bin) sliding across the ground so that another object (large trash
bin) entirely occluded the target. As the screen captures in Figure 5 indicate,
despite abrupt variations in depth measurements caused by the occluding object,
the system is able to fully recover from severe occlusions while maintaining its
distance from the target.

Figure 6 demonstrates the system’s ability to respond to a fast moving target
at distances beyond the range of the ToF camera. Figure 7 shows quantitative
results regarding this experiments. The top left graph shows the measured and
the estimated pixel positions upos and its set point spu

, which is the center of
the camera field of view. The top right graph shows the reference distance from
the target, spz

, the measured range from TLDz and ToFz as well as the fused
estimate estz. Finally, in the bottom plots of the figure we can see the control
actions performed in order to move the robot in response to the position error
estimates. As the figure indicates, the linear and angular speed controllers try
to compensate for the estimated errors upos and estz, respectively.

3

5.412m

44.6278m

15.24m

3.3274m

Fig. 3: Floor plan sketch showing the robot trajectory.

Figure 8 illustrates the response of the system to fast motions along the u

axis. As the target moves in a certain direction, the robot moves to compensate
for that. As the figure shows, when the target stops moving (from around iter-
ation 500 to 590 and 700 to 750), the robot motion quickly stabilizes with the
target near the set point. Note that the small bias in position could be easily
compensated by further tuning the rotation controller.

3 Note that the set points spu and spz correspond to the desired target position with
respect to the robot, not to the actual robot position. The controllers use the set
points to move the robot so that the difference between the estimated position and
the set point is minimized.
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FRAME:9506 FRAME:9570 FRAME:9790 FRAME:9815 FRAME:9870 FRAME:9896

Fig. 4: Screen captures from the qualitative experiment illustrating the system’s
robustness to a variety of conditions, particularly illumination changes.

FRAME:1371 FRAME:1377 FRAME:1384 FRAME:1391 FRAME:1392 FRAME:1400

Fig. 5: System recovering the target object (recycling bin) after a full occlusion
by another object (large trash bin).

FRAME:886 FRAME:906 FRAME:973 FRAME:1018 FRAME:1061 FRAME:1257

Fig. 6: The target object (backpack) is moved backwards, quickly and beyond
the ToF camera’s range (> 1m), the system is able to respond smoothly, making
use of TLDz, and successfully follows the object.

In order to show the effects of moving the target out of the range of the
ToF camera, we kept the robot static and tracked a target at different distances
starting well within the ToF range and progressing towards the 1m threshold
and beyond. The results of this experiment are shown in Figure 9. The left graph
shows that when the target is within the range of the ToF sensor, the estimate
relies on measurements from TLD and ToF (frames ∼ 100 − 200). When the
target is farther than 1m (frames ∼ 350− 650), the estimated distance is based
almost entirely on TLD. When the target is moved back to the starting position
(frame ∼ 650) the ToF measurements are again considered in the estimate. The
right plot shows that when the target is near the 1m mark (frames ∼ 350−500),
the ToF measurements are very noisy and hence relying mostly on TLD is in
fact an appropriate strategy.

We validate our choice of Rvvζ by illustrating that the percentage of zeros
in the depth image is a viable way to determine the accuracy of the ToF sensor.
In other words, the error between the ToF measurements and actual distance
should increase monotonically as Rvvζ increases. This experiment also consisted
of moving the target object progressively farther away while keeping the robot
static. However, this time the focus was not on the behavior near the threshold
of 1m, but on the overall trend of the error as the distance increased. The graph
in Figure 10 shows that as the target moves away from the robot, the error
between ToF measurements and the ground truth increases and so does Rvvζ .
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Fig. 7: Quantitative results corresponding to the backpack tracking experiment
shown in Figure 6. spu

= 160 corresponds to the center of the image in the
horizontal direction, and spz

= 750 corresponds to the initial distance to the
target in millimeters.

FRAME:112 FRAME:194

FRAME:660

Fig. 8: Left) The target object (backpack) is moved to the left and to the right.
Right) Response of the controller to the angular turn.

5 Conclusion

In this paper, an autonomous, cost effective, vision-based object following ground
vehicle was proposed. The system was based on an iRobot Create 2 mobile plat-
form, a Creative Senz3D ToF camera, and a Jetson TK1 embedded computer.
Object detection was accomplished using TLD and tracking was performed by
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Fig. 9: Plots showing in detail how the data fusion between TLD and ToF mea-
surements works.

Fig. 10: Correlation between the distance and the level of confidence Rvvζ .

a Kalman filter. Data fusion was implemented in order to extend the operating
range of the system beyond the measuring capabilities of the ToF sensor. All the
processing was performed in real-time on the on-board computer. Several exper-
iments were conducted where the system successfully followed target objects in
a variety of situations, including illumination changes, full occlusions, and rapid
movement at far (> 1m) distances. Quantitative experiments showed in detail
how data fusion is accomplished.

Although the proposed approach is not restricted to Kalman filters and alter-
native recursive Bayesian methods such as Sequential Monte Carlo approaches
[30] could be employed for increased robustness, one of our main objectives was
to devise a lightweight method that could be used in portable embedded plat-
forms. Hence, a Kalman filter seemed like the most effective choice.

There are several future directions to explore in this project. In the first
place it would be beneficial to improve the control heuristics so that the decision
between moving forward and turning would occur more seamlessly thereby re-
ducing the chances of losing track of the target due to abrupt motions. Second,
the ToF camera used in this project has a limited range and cannot be used
outdoors, so a better camera would extend the use of the system. In addition,
faster and more robust tracking can be accomplished simply by porting more of
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the software implementation to the GPU in the embedded computer. Finally, ex-
ploring data association and track management mechanisms would allow for the
system to perform more robustly in more complex scenarios in which multiple
similar targets move in close proximity.
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