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Abstra
t. Tra
king methods based on 
orrelation �lters have gained

popularity in re
ent years due to their robustness to rotations, o

lu-

sions, and other 
hallenging aspe
ts of visual tra
king. Su
h methods

generate a 
on�den
e or response map whi
h is used to estimate the new

lo
ation of the tra
ked target. By examining the features of this map,

important details about the tra
ker status 
an be inferred and 
ompen-

satory measures 
an be taken in order to minimize failures. We propose

an algorithm that uses the mean and entropy of this response map to pre-

vent bad target model updates 
aused by problems su
h as o

lusions

and motion blur as well as to determine the size of the target sear
h

area. Quantitative experiments demonstrate that our method improves

su

ess plots over a baseline tra
ker that does not in
orporate our failure

dete
tion me
hanism.

1 Introdu
tion

Visual obje
t tra
king is an important aspe
t of 
omputer vision. Mu
h work has

gone into designing methods to improve the robustness of visual tra
kers against

a variety of 
hallenging 
onditions. Some of these obsta
les in
lude partial and

full o

lusion, illumination variations and pose 
hanges as well as deformation

and blurring, all of whi
h signi�
antly alter the target's appearan
e. Re
ent de-

velopments, parti
ularly with the popularization of 
orrelation �lters [1,2,3℄ and


onvolutional neural networks (CNN) [4,5℄, have vastly improved the robustness

of these systems. However, most of these approa
hes do not address the long-

term tra
king problem in whi
h a tra
ker must automati
ally dete
t whether

it has lost tra
k of the target and take remedial a
tions. Our work attempts

to improve the long-term robustness of 
orrelation �lter-based tra
kers against

temporary target losses 
aused by o

lusion and motion blur. Although in this

work we fo
us on the Correlation Filter with Convolutional Features algorithm

(CF2) [4℄, a state-of-the art visual tra
ker, our method is appli
able to any other

approa
h that generates a 
on�den
e map of the target position at ea
h image

frame.

We propose a solution that attempts to pre
lude bad updates from o

urring

and gives the tra
ker a means of re
overy from hard o

lusions. Using the prop-

erties of the response map (see Figure 1), we generate 
on�den
e s
ores from
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Fig. 1. Correlation �lter tra
ker response map from CF2 over the OTB-2015

deer sequen
e

whi
h we dis
riminate good frames from bad frames and enable or disable the

target model update a

ordingly. We additionally use these 
on�den
e s
ores to

readjust the sear
h area within the image. This pro
ess is summarized in Algo-

rithm 1. A signi�
ant observation that led to this approa
h was CF2's inability

to handle partial o

lusions without learning and having to unlearn the o

lud-

ing obje
t. While CF2 handles the majority of these events well, o

lusions of

extended duration hamper its performan
e. In 
ertain 
ir
umstan
es, CF2 learns

and begins to tra
k the o

luding obje
t. By analyzing the mean and entropy

of the response map over time, we were able to dete
t 
hanges in the target's

appearan
e and surroundings that may harm the tra
ker's ability. In addition,

while CF2 is relatively insensitive to the size of target sear
h area, dynami


variation of this parameter was 
riti
al to allow it to re
over from temporary

o

lusions in whi
h the position of the target 
hanges signi�
antly before and

after the o

lusion. Utilizing these 
on
epts, our tra
ker is able to dete
t hard

o

lusions as well as signi�
ant appearan
e 
hanges 
aused by motion blur.

Algorithm 1 Proposed long-term tra
king algorithm with failure dete
tion

Input: Correlation �lter response map

Output: Tra
ker state

1: repeat

2: Compute mean µ and entropy s from response map a

ording to Eqs. 1 and 2

3: Formulate 
on�den
e s
ores D(µ) and D(s) a

ording to Eqs. 3 and 4

4: Evaluate tra
ker state a

ording to Fig. 3

5: Do tra
ker state operations a

ording to Alg. 2

6: until End of video sequen
e

2 Related Work

Tra
king approa
hes based on 
orrelation �lters are often a

ompanied with

modules to dete
t or mitigate tra
ker failures. One general approa
h to fail-
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ure dete
tion is to explore the 
onsisten
y among multiple dete
tors with 
om-

plementary 
hara
teristi
s. Multiple kernel 
orrelation �lters [2℄ and ensemble

methods su
h as [6℄ are examples of su
h approa
hes applied to 
orrelation �lters.

Deformable parts model approa
hes su
h as [7,8℄ also fall in this 
ategory.

Another e�e
tive failure dete
tion me
hanism is to analyze the temporal


onsisten
y along the target's traje
tory. In [9℄, for example, the traje
tory of the

target is 
omputed on a forward and on a ba
kward pass, and the error between

both traje
tories is used to identify in
orre
t estimates. A similar approa
h is

proposed in [10℄, where the distributions of a forward and a ba
kward tra
ker

are 
ompared to determine reliable target features. In [11℄, Cordes et al. use

temporal 
onsisten
y to keep tra
k of image features and improve s
ene stru
ture

re
onstru
tion using bundle adjustment.

Methods that 
ombine these two approa
hes are also very su

essful. The

Multiple Experts using Entropy Minimization tra
ker (MEEM) [12℄ uses sam-

ples from several time instants to 
ompute the 
umulative 
on�den
e level of

multiple 
lassi�ers and 
hoose one among them to estimate the target position.

The MULti-Store Tra
ker (MUSTer) [13℄ uses a keypoint-based approa
h for

long term tra
king and a 
orrelation �lter for short term tra
king, and failures

are dete
ted a

ording to the level of 
onsisten
y among both tra
kers.

Finally, some approa
hes attempt to re
ognize abrupt variations in the target

model to dete
t or avoid failures. In [14℄, the authors attempt to avoid tra
king

failures 
aused by motion blur by expli
itly modeling the target appearan
e in

the presen
e of blur of varying magnitudes and along multiple dire
tions. Siena

and Kumar [15℄ dete
t o

lusions by monitoring 
olor variations in the target

model. While our approa
h may be 
onsidered to belong to this 
ategory, it di�ers

from these methods in that it is the �rst to utilize the intrinsi
 
hara
teristi
s

of 
orrelation �lters to address tra
king 
hallenges.

3 Proposed Approa
h

In this se
tion, we introdu
e the response map features utilized in our approa
h

as well as the methods employed in the generation of our 
on�den
e s
ores.

We also dis
uss how our proposed method handles target model learning and

position update. Finally, we dis
uss the proposed sear
h area s
aling behavior.

3.1 Con�den
e S
ore Generation

Let fi be an N ×M matrix representing the response map from the ith frame.

The mean and the negative entropy of fi are given by

µi =

N
∑

x=1

M
∑

y=1

f
(x,y)
i , (1)

si =

N
∑

x=1

M
∑

y=1

f
(x,y)
i log

(

f
(x,y)
i

)

, (2)
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where f
(x,y)
i 
orresponds to the yth element of the xth row of f i

. We then


ompute a moving weighted average over the last N frames of the 
olumn ve
tor

xi = [µi, si]
T
, whi
h in
ludes the mean and the entropy

W (xi) =

∑N
i=1 xii

∑N
i=1 i

, (3)

where i is the frame number. Note that older frames are represented by lower

values of i and more re
ent frames by higher values. Our 
on�den
e s
ore ve
tor

D(xi) = [D(µi), D(si)]
T
is given by the di�eren
e between the 
urrent value of

xi and its moving average normalized by the mean of these two values:

D(xi) =
W (xi)− xi

(W (xi)+xi)/2
(4)

The state of the tra
ker 
an then be determined by 
omparing D(µi) and D(si)
with threshold values µt, spt, sft as explained in the next se
tion.

3.2 Learning and Position Management

Depending on the value of 
on�den
e s
oreD(xi), our method either i) allows the

tra
ker to operate normally, ii) disables the target model learning me
hanisms, or

iii) prevents the tra
ker from performing bounding box updates altogether. To do

so, we designed a �nite state ma
hine that toggles state based upon thresholding


on�den
e values. The �nite state ma
hine has three primary states: Target

Found, Partial Loss, and Full Loss. In the Target Found state, the tra
ker has a

high degree of 
on�den
e and it performs its normal operations. In the Partial

Loss state, the tra
ker has lost enough 
on�den
e to assume that the target is

su�
iently altered or o

luded to disable learning. In the Full Loss state, the

tra
ker has lost a severe amount of 
on�den
e, and hen
e the tra
ker avoids

learning as well as updating the bounding box position. The state transitions


onditions are expressed in Figure 3.

The a
tions performed by our approa
h in ea
h state are summarized in

Algorithm 2. It is important to note that whenever the �nite state ma
hine is

not in the Target Found state, the weighted averages are and 
orresponding


on�den
e s
ores are not updated. Doing so prevents the expe
ted mean and

entropy from 
onverging to the new values that the tra
ker should disregard. An

example of our algorithm in a
tion is shown in Figure 2.

3.3 Sear
h Area S
aling Behavior

The magnitude of the 
on�den
e s
ore ve
tor D(xi) is also used to determine

the size of the sear
h area Mi at a given frame as follows

Mi = ms

[(√
smµm

2

)

D(xi)
TT

]

+mo, (5)
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Fig. 2. Evolution of the 
on�den
e over the OTB-2015 jogging-1 sequen
e. In

(a), for ea
h frame, a green bounding box shows the Target Found state and

a yellow bounding box 
orresponds to a Partial Loss state (see Fig. 3 for a

des
ription of the states). In (b), the 
orresponding response maps are given. In

(
) the 
on�den
e s
ores D(µi) and D(si) are given as well as the 
orresponding

thresholds µt, spt, and sft

where T =
[

µ−1
t , s−1

ft

]

, µm and sm are normalization 
onstants su
h that the dot

produ
t 0 ≤ D(xi)
TT ≤ 1, and ms and mo spe
ify the range of values desired

for s
aling the sear
h window. That is, mo ≤ Mi ≤ mo+ms. By multiplying the


on�den
e ve
tor by T , we make the sear
h window size proportional to

D(µi)/µt

and

D(si)/sft. Sin
e both thresholds are negative, the lower the 
on�den
e is with

respe
t to its 
orresponding threshold, the larger the sear
h window size.

4 Results

We evaluate our algorithm using two large and well known tra
ker ben
hmarks:

OTB-2015 [16℄, and VOT2015 [17℄. The OTB-2015 ben
hmark extends the tradi-

tional OTB-2013 ben
hmark [18℄ to 100 data sequen
es that are annotated with

11 attributes whi
h represent 
hallenging aspe
ts of tra
king. It ben
hmarks
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1. Always True

2. D(µ) > µt ∨D(s) > spt
3. D(µ) ≤ µt ∧D(s) ≤ spt ∧D(s) > sft
4. D(µ) ≤ µt ∧D(s) ≤ spt ∧D(s) ≤ sft

Fig. 3. State transition diagram for the tra
ker. The number next to ea
h arrow


orresponds to the transition 
onditions des
ribed in the 
orresponding item

below the �gure

Algorithm 2 Tra
ker state evaluation

Input: Mean weighted average, Entropy weighted average

Output: Tra
ker state

1: if State == Target Found then

2: Update weighted averages of the mean µ and entropy s

3: Estimate new target position

4: Update 
orrelation �lters

5: else if State == Partial Loss then

6: Estimate new target position

7: else state = Full Loss

8: Update sear
h area a

ording to Eq. 5

9: end if

tra
kers against a one-pass evaluation (OPE), a spatial robustness evaluation

(SRE), and a temporal robustness evaluation (TRE).

1

The VOT2015 ben
h-

mark 
ontains 60 short sequen
es taken from popular and 
hallenging datasets.

Ea
h frame of every sequen
e is annotated a

ording to 5 attributes.

In OTB-2015, our method outperforms CF2 on a subset of attributes while

maintaining reliability in the ones it does not. Improvements are most noti
eable

in sequen
es with low resolution and out of view portions. The four attributes

in whi
h our method shows improved performan
e are visualized in Figures 4

1

Be
ause of implementation di�
ulties, our evaluation ex
ludes the redTeam sequen
e

and 
overs only 99 of the original 100 sequen
es.
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and 5 for the OPE and SRE metri
s. The improvement on the TRE metri
 was

negligible (0.21%) and the 
orresponding graphs are omitted. The 
orresponding

improvements in the overall dataset are modest, however, as sequen
es marked

with low resolution and out of view attributes a

ount for only 8% and 14%

respe
tively of the entire ben
hmark. As a result, these gains are diluted in the

overall results, as shown in Table 1.

We found that in the OTB evaluation, our method improves performan
e

against several tra
king 
hallenges without negatively a�e
ting the general per-

forman
e of the tra
ker. Spe
i�
ally, our tra
ker improves the SRE performan
e

of most sequen
es and in
reases the 
han
e that when the tra
ker loses tra
k of

the target, it will su

essfully re
over later in the sequen
e. This performan
e

gain is best shown in the Biker, Bird1, Car1, Jogging-2, and Freeman1 sequen
es,

where our s
aling method helps prevents a target loss. These improvements ex-

tend to s
enes where a qui
k o

lusion or 
hange in motion moves the target o�

tra
k or blurs the target. Some of the sequen
es in whi
h our method generated

signi�
ant performan
e improvements are illustrated in Figure 6.
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Fig. 4. OPE evaluation in the OTB-2015 dataset showing attributes in whi
h

our method outperforms the baseline tra
ker
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Fig. 5. SRE evaluation in the OTB-2015 dataset showing attributes in whi
h

our method outperforms the baseline tra
ker

Table 1. Relative overall performan
e 
hange in the OTB-2015 dataset with

respe
t to the baseline method. The modest gains are 
aused by the fa
t that the

sequen
es in whi
h our method shows the greatest performan
e improvements


orrespond to a small portion of the overall dataset

OPE (%) SRE (%) TRE (%)

Pre
ision 1.6 0.56 0.13

Su

ess 0.36 0.39 -0.17

In the VOT2015 evaluations, both methods perform similarly among most

sequen
es, but our method shows slight redu
tions in a

ura
y, robustness,

and expe
ted overlap of 0.07, 0.01, and 0.008, respe
tively. We found, however,

that these redu
tions are sometimes due to the evaluation method used by the

VOT2015 testben
h, whi
h reinitializes tra
kers whenever a tra
king failure o
-


urs. In some sequen
es, these reinitializations penalize our method's ability to

keep tra
k of a target longer, even if with a lower a

ura
y. An example of this

o

urs in the �sh3 sequen
e where our tra
ker is able to tra
k the target for

the entire duration of the sequen
e, but with some drift towards the end. The

baseline tra
ker fails early in the sequen
e and is a

urately reinitialized with the
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Fig. 6. Sele
t OTB-2015 sequen
es where our method signi�
antly outperforms

the baseline tra
ker in SRE and or TRE evaluation: From top to bottom, the

sequen
es are biker, bird1, and 
ar1. CF2 is represented by the green bounding

box and our approa
h by the red one. Other sequen
es in whi
h our tra
ker shows

substantial performan
e improvement su
h as fa
eO

1, freeman1, jogging-2, and

twinnings and not shown here due to spa
e 
onstraints

Fig. 7. Sele
t VOT2015 sequen
es where our method outperforms the base

tra
ker. From top to bottom, the sequen
es are bmx and �sh3. CF2 is repre-

sented by the yellow bounding box, our approa
h by the red bounding box, and

the ground truth by the bla
k one

ground truth allowing it to a
hieve a better pre
ision s
ore and essentially penal-

izing our tra
ker for not losing tra
k of the target. We provide relevant examples

in Figure 7, whi
h illustrate highlights and instan
es where the ben
hmark made

it di�
ult make divisive 
on
lusions.

4.1 Failure Cases

In Figure 8, we provide examples where our tra
ker performs worse than the

baseline tra
ker. In the Bolt2 sequen
e, low 
on�den
e s
ores in the initial frames


ause the tra
ker's sear
h spa
e to grow until it �nds a similar obje
t nearby
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Fig. 8. Snapshots of the OTB and VOT sequen
es in whi
h CF2 outperforms

our method: The leftmost and the 
enter sequen
es are OTB's bolt2 and singer1

sequen
es. CF2 is again the green bounding box and our approa
h is the red

box. The leftmost �gure 
orresponds to the VOT2015 dinosaur sequen
e where

CF2 is shown in yellow, our method in red, and the groundtruth in bla
k

whi
h it ultimately begins to tra
k. For the Singer1 sequen
e, a large bounding

box, whi
h in
ludes a substantial portion of the ba
kground, 
oupled with a s
ale


hange lowers our method's 
on�den
e and 
onsequently 
auses it to expand its

sear
h spa
e. The 
ombination of these features spreads the 
onvolution sampling

thin and loses the target. In VOT2015's dinosaur sequen
e, the initial target

also in
ludes a signi�
ant portion of the ba
kground, and its 
lutter 
auses large

swings in the response map. As a result, our method generates low 
on�den
e

s
ores and 
onsequently loses the target.

5 Con
lusions

This work presents a failure dete
tion module applied to a 
orrelation �lter

tra
ker. This module utilizes the mean and entropy of the response map to

generate 
on�den
e s
ores, whi
h in turn, are used to s
ale the sear
h spa
e

and 
ontrol the learning behavior of the base tra
ker. Our results show that our

method improves the base tra
ker's reliability with respe
t to blurry motion and

abrupt o

lusions.

Overall we see that there is room for improvement in how we generate our


on�den
e s
ores. While the mean and the entropy are good indi
ators of tra
k-

ing failures, additional metri
s of the spread of the 
orrelation maps, whi
h are

more robust to ba
kground 
lutter, are needed to address the issues dis
ussed

in Se
tion 4.1. One possibility is to additionally weight our metri
s by a radial

fun
tion that makes it less sus
eptible to ba
kground 
lutter around the target.
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