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Abstract. Tracking methods based on correlation filters have gained
popularity in recent years due to their robustness to rotations, occlu-
sions, and other challenging aspects of visual tracking. Such methods
generate a confidence or response map which is used to estimate the new
location of the tracked target. By examining the features of this map,
important details about the tracker status can be inferred and compen-
satory measures can be taken in order to minimize failures. We propose
an algorithm that uses the mean and entropy of this response map to pre-
vent bad target model updates caused by problems such as occlusions
and motion blur as well as to determine the size of the target search
area. Quantitative experiments demonstrate that our method improves
success plots over a baseline tracker that does not incorporate our failure
detection mechanism.

1 Introduction

Visual object tracking is an important aspect of computer vision. Much work has
gone into designing methods to improve the robustness of visual trackers against
a variety of challenging conditions. Some of these obstacles include partial and
full occlusion, illumination variations and pose changes as well as deformation
and blurring, all of which significantly alter the target’s appearance. Recent de-
velopments, particularly with the popularization of correlation filters [1,2,3] and
convolutional neural networks (CNN) [4,5], have vastly improved the robustness
of these systems. However, most of these approaches do not address the long-
term tracking problem in which a tracker must automatically detect whether
it has lost track of the target and take remedial actions. Our work attempts
to improve the long-term robustness of correlation filter-based trackers against
temporary target losses caused by occlusion and motion blur. Although in this
work we focus on the Correlation Filter with Convolutional Features algorithm
(CF2) [4], a state-of-the art visual tracker, our method is applicable to any other
approach that generates a confidence map of the target position at each image
frame.

We propose a solution that attempts to preclude bad updates from occurring
and gives the tracker a means of recovery from hard occlusions. Using the prop-
erties of the response map (see Figure 1), we generate confidence scores from
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Fig. 1. Correlation filter tracker response map from CF2 over the OTB-2015
deer sequence

which we discriminate good frames from bad frames and enable or disable the
target model update accordingly. We additionally use these confidence scores to
readjust the search area within the image. This process is summarized in Algo-
rithm 1. A significant observation that led to this approach was CF2’s inability
to handle partial occlusions without learning and having to unlearn the occlud-
ing object. While CF2 handles the majority of these events well, occlusions of
extended duration hamper its performance. In certain circumstances, CF2 learns
and begins to track the occluding object. By analyzing the mean and entropy
of the response map over time, we were able to detect changes in the target’s
appearance and surroundings that may harm the tracker’s ability. In addition,
while CF2 is relatively insensitive to the size of target search area, dynamic
variation of this parameter was critical to allow it to recover from temporary
occlusions in which the position of the target changes significantly before and
after the occlusion. Utilizing these concepts, our tracker is able to detect hard
occlusions as well as significant appearance changes caused by motion blur.

Algorithm 1 Proposed long-term tracking algorithm with failure detection

Input: Correlation filter response map
Output: Tracker state

1: repeat

2 Compute mean p and entropy s from response map according to Egs. 1 and 2
3 Formulate confidence scores D(u) and D(s) according to Egs. 3 and 4

4: Evaluate tracker state according to Fig. 3

5 Do tracker state operations according to Alg. 2

6: until End of video sequence

2 Related Work

Tracking approaches based on correlation filters are often accompanied with
modules to detect or mitigate tracker failures. One general approach to fail-
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ure detection is to explore the consistency among multiple detectors with com-
plementary characteristics. Multiple kernel correlation filters [2] and ensemble
methods such as [6] are examples of such approaches applied to correlation filters.
Deformable parts model approaches such as [7,8] also fall in this category.

Another effective failure detection mechanism is to analyze the temporal
consistency along the target’s trajectory. In [9], for example, the trajectory of the
target is computed on a forward and on a backward pass, and the error between
both trajectories is used to identify incorrect estimates. A similar approach is
proposed in [10], where the distributions of a forward and a backward tracker
are compared to determine reliable target features. In [11], Cordes et al. use
temporal consistency to keep track of image features and improve scene structure
reconstruction using bundle adjustment.

Methods that combine these two approaches are also very successful. The
Multiple Experts using Entropy Minimization tracker (MEEM) [12] uses sam-
ples from several time instants to compute the cumulative confidence level of
multiple classifiers and choose one among them to estimate the target position.
The MULti-Store Tracker (MUSTer) [13] uses a keypoint-based approach for
long term tracking and a correlation filter for short term tracking, and failures
are detected according to the level of consistency among both trackers.

Finally, some approaches attempt to recognize abrupt variations in the target
model to detect or avoid failures. In [14], the authors attempt to avoid tracking
failures caused by motion blur by explicitly modeling the target appearance in
the presence of blur of varying magnitudes and along multiple directions. Siena
and Kumar [15] detect occlusions by monitoring color variations in the target
model. While our approach may be considered to belong to this category, it differs
from these methods in that it is the first to utilize the intrinsic characteristics
of correlation filters to address tracking challenges.

3 Proposed Approach

In this section, we introduce the response map features utilized in our approach
as well as the methods employed in the generation of our confidence scores.
We also discuss how our proposed method handles target model learning and
position update. Finally, we discuss the proposed search area scaling behavior.

3.1 Confidence Score Generation

Let f; be an N x M matrix representing the response map from the ith frame.
The mean and the negative entropy of f; are given by

N M
Hi = Zz.fz(w)y)v (1)

r=1y=1

N M
S; = Z Zfi(x’y) log (fi(x7y)) ) (2)

r=1y=1
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where fi(w’y) corresponds to the yth element of the xth row of fi. We then
compute a moving weighted average over the last IV frames of the column vector
x; = w4, si]T, which includes the mean and the entropy

Zi]\il Tl

N .
Dozl

where ¢ is the frame number. Note that older frames are represented by lower
values of ¢ and more recent frames by higher values. Our confidence score vector
D(x;) = [D(us), D(s;)]" is given by the difference between the current value of
x; and its moving average normalized by the mean of these two values:

W (xi) = ; (3)

W(.’El — X
D(wi) = (VV(x))-i-ac)/g (4)

The state of the tracker can then be determined by comparing D(u;) and D(s;)
with threshold values (i, sp¢, sp¢ as explained in the next section.

3.2 Learning and Position Management

Depending on the value of confidence score D(z;), our method either i) allows the
tracker to operate normally, ii) disables the target model learning mechanisms, or
iii) prevents the tracker from performing bounding box updates altogether. To do
s0, we designed a finite state machine that toggles state based upon thresholding
confidence values. The finite state machine has three primary states: Target
Found, Partial Loss, and Full Loss. In the Target Found state, the tracker has a
high degree of confidence and it performs its normal operations. In the Partial
Loss state, the tracker has lost enough confidence to assume that the target is
sufficiently altered or occluded to disable learning. In the Full Loss state, the
tracker has lost a severe amount of confidence, and hence the tracker avoids
learning as well as updating the bounding box position. The state transitions
conditions are expressed in Figure 3.

The actions performed by our approach in each state are summarized in
Algorithm 2. It is important to note that whenever the finite state machine is
not in the Target Found state, the weighted averages are and corresponding
confidence scores are not updated. Doing so prevents the expected mean and
entropy from converging to the new values that the tracker should disregard. An
example of our algorithm in action is shown in Figure 2.

3.3 Search Area Scaling Behavior

The magnitude of the confidence score vector D(x;) is also used to determine
the size of the search area M; at a given frame as follows
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Fig. 2. Evolution of the confidence over the OTB-2015 jogging-1 sequence. In
(a), for each frame, a green bounding box shows the Target Found state and
a yellow bounding box corresponds to a Partial Loss state (see Fig. 3 for a
description of the states). In (b), the corresponding response maps are given. In
(¢) the confidence scores D(u;) and D(s;) are given as well as the corresponding
thresholds pis, sp¢, and sy

where T = {,ut_ L sftl] , bm and s, are normalization constants such that the dot

product 0 < D(z;)TT < 1, and m, and m, specify the range of values desired
for scaling the search window. That is, m, < M; < m, +ms. By multiplying the
confidence vector by T', we make the search window size proportional to D(k:)/y,
and D(si)/s;,. Since both thresholds are negative, the lower the confidence is with
respect to its corresponding threshold, the larger the search window size.

4 Results

We evaluate our algorithm using two large and well known tracker benchmarks:
OTB-2015 [16], and VOT2015 [17]. The OTB-2015 benchmark extends the tradi-
tional OTB-2013 benchmark [18] to 100 data sequences that are annotated with
11 attributes which represent challenging aspects of tracking. It benchmarks
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Fig. 3. State transition diagram for the tracker. The number next to each arrow
corresponds to the transition conditions described in the corresponding item
below the figure

Algorithm 2 Tracker state evaluation

Input: Mean weighted average, Entropy weighted average
Output: Tracker state

if State == Target Found then
Update weighted averages of the mean p and entropy s
Estimate new target position
Update correlation filters
else if State == Partial Loss then
Estimate new target position
else state = Full Loss
Update search area according to Eq. 5
end if

trackers against a one-pass evaluation (OPE), a spatial robustness evaluation
(SRE), and a temporal robustness evaluation (TRE).! The VOT2015 bench-
mark contains 60 short sequences taken from popular and challenging datasets.
Fach frame of every sequence is annotated according to 5 attributes.

In OTB-2015, our method outperforms CF2 on a subset of attributes while
maintaining reliability in the ones it does not. Improvements are most noticeable
in sequences with low resolution and out of view portions. The four attributes
in which our method shows improved performance are visualized in Figures 4

! Because of implementation difficulties, our evaluation excludes the red Team sequence
and covers only 99 of the original 100 sequences.
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and 5 for the OPE and SRE metrics. The improvement on the TRE metric was
negligible (0.21%) and the corresponding graphs are omitted. The corresponding
improvements in the overall dataset are modest, however, as sequences marked
with low resolution and out of view attributes account for only 8% and 14%
respectively of the entire benchmark. As a result, these gains are diluted in the
overall results, as shown in Table 1.

We found that in the OTB evaluation, our method improves performance
against several tracking challenges without negatively affecting the general per-
formance of the tracker. Specifically, our tracker improves the SRE performance
of most sequences and increases the chance that when the tracker loses track of
the target, it will successfully recover later in the sequence. This performance
gain is best shown in the Biker, Bird1, Carl, Jogging-2, and Freemanl sequences,
where our scaling method helps prevents a target loss. These improvements ex-
tend to scenes where a quick occlusion or change in motion moves the target off
track or blurs the target. Some of the sequences in which our method generated
significant performance improvements are illustrated in Figure 6.
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Fig.4. OPE evaluation in the OTB-2015 dataset showing attributes in which
our method outperforms the baseline tracker
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Fig.5. SRE evaluation in the OTB-2015 dataset showing attributes in which
our method outperforms the baseline tracker

Table 1. Relative overall performance change in the OTB-2015 dataset with
respect to the baseline method. The modest gains are caused by the fact that the
sequences in which our method shows the greatest performance improvements
correspond to a small portion of the overall dataset

OPE (%)|SRE (%)|TRE (%)
Precision 1.6 0.56 0.13
Success 0.36 0.39 -0.17

In the VOT2015 evaluations, both methods perform similarly among most
sequences, but our method shows slight reductions in accuracy, robustness,
and expected overlap of 0.07, 0.01, and 0.008, respectively. We found, however,
that these reductions are sometimes due to the evaluation method used by the
VOT2015 testbench, which reinitializes trackers whenever a tracking failure oc-
curs. In some sequences, these reinitializations penalize our method’s ability to
keep track of a target longer, even if with a lower accuracy. An example of this
occurs in the fish3 sequence where our tracker is able to track the target for
the entire duration of the sequence, but with some drift towards the end. The
baseline tracker fails early in the sequence and is accurately reinitialized with the
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Fig. 6. Select OTB-2015 sequences where our method significantly outperforms
the baseline tracker in SRE and or TRE evaluation: From top to bottom, the
sequences are biker, birdl, and carl. CF2 is represented by the green bounding
box and our approach by the red one. Other sequences in which our tracker shows
substantial performance improvement such as faceOccl, freemanl, jogging-2, and
twinnings and not shown here due to space constraints

Fig. 7. Select VOT2015 sequences where our method outperforms the base
tracker. From top to bottom, the sequences are bmz and fish3. CF2 is repre-
sented by the yellow bounding box, our approach by the red bounding box, and
the ground truth by the black one

ground truth allowing it to achieve a better precision score and essentially penal-
izing our tracker for not losing track of the target. We provide relevant examples
in Figure 7, which illustrate highlights and instances where the benchmark made
it difficult make divisive conclusions.

4.1 Failure Cases

In Figure 8, we provide examples where our tracker performs worse than the
baseline tracker. In the Bolt2 sequence, low confidence scores in the initial frames
cause the tracker’s search space to grow until it finds a similar object nearby
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Fig. 8. Snapshots of the OTB and VOT sequences in which CF2 outperforms
our method: The leftmost and the center sequences are OTB’s bolt2 and singerl
sequences. CF2 is again the green bounding box and our approach is the red
box. The leftmost figure corresponds to the VOT2015 dinosaur sequence where
CF2 is shown in yellow, our method in red, and the groundtruth in black

which it ultimately begins to track. For the Singer! sequence, a large bounding
box, which includes a substantial portion of the background, coupled with a scale
change lowers our method’s confidence and consequently causes it to expand its
search space. The combination of these features spreads the convolution sampling
thin and loses the target. In VOT2015’s dinosaur sequence, the initial target
also includes a significant portion of the background, and its clutter causes large
swings in the response map. As a result, our method generates low confidence
scores and consequently loses the target.

5 Conclusions

This work presents a failure detection module applied to a correlation filter
tracker. This module utilizes the mean and entropy of the response map to
generate confidence scores, which in turn, are used to scale the search space
and control the learning behavior of the base tracker. Our results show that our
method improves the base tracker’s reliability with respect to blurry motion and
abrupt occlusions.

Overall we see that there is room for improvement in how we generate our
confidence scores. While the mean and the entropy are good indicators of track-
ing failures, additional metrics of the spread of the correlation maps, which are
more robust to background clutter, are needed to address the issues discussed
in Section 4.1. One possibility is to additionally weight our metrics by a radial
function that makes it less susceptible to background clutter around the target.
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