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Abstract This paper presents a framework to predict
the performance of multiple target tracking (MTT) tech-

niques. The framework is based on the mathematical
descriptors of point processes, the probability generat-
ing functional (p.g.fl). It is shown that conceptually the

p.g.fls of MTT techniques can be interpreted as a trans-

form that can be marginalized to an expression that en-

codes all the information regarding the likelihood model

as well as the underlying assumptions present in a given

tracking technique. In order to use this approach for
tracker performance prediction in video sequences, a
framework that combines video quality assessment con-

cepts and the marginalized transform is introduced.

The multiple hypothesis tracker (MHT) and Markov

Chain Monte Carlo (MCMC) data association methods

are used as a test cases. We introduce their transforms

and perform a numerical comparison to predict their

performance under identical conditions.
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1 Introduction

The problem of Multiple Target Tracking (MTT) gen-

eralizes the notion of single target tracking and state
estimation [29,15] to more complex scenarios in which
the state of multiple elements must be estimated si-

multaneously. Since there is no unified theory for single

target tracking and estimation, a number of distinct

MTT techniques have been proposed, each of which

imposes a certain set of assumptions on the problem

to make it tractable. Although a number of different
approaches have been employed, most of them rely to
some extent on Bayesian probabilities. Today the most

widely used techniques can be divided into four sets of

filters: Extensions of the Bayesian framework for single

target tracking [21] (classical examples are Multiple Hy-

pothesis Tracking [22], Joint Probabilistic Data Associ-

ation filter [8], and Markov Chain Monte Carlo meth-
ods [19]), Random Finite Sets framework [14] (examples
are Probability Hypothesis Density filters [32], Cardi-

nalized Probability Hypothesis Density filters [31], and

Multi-Bernoulli filters [33,10]), Point Processes frame-

work [28] (e.g. Intensity Filter) and heuristic imple-

mentations (e.g. Nearest neighbor standard filter) [38].

Many additional examples for each of the frameworks

can be found in the literature and, given the renewed

interest in the data association problem, particularly in

the machine vision community [2,39], that number is

expected to continue to increase [12,16].

Despite the great progress made in recent years in
the area of MTT and the availability of a large num-

ber of algorithms to solve the problem, the choice of

MTT technique to be used on any given application

is usually made ad-hoc based on the familiarity of the

designer with a certain technique. Currently, there are

no mechanisms to help determine the chances of suc-
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cess of any tracking technique other than applying dif-

ferent methods to a certain problem and comparing

them using standard target tracking metrics. But could

there be some fundamental characteristics of the prob-

lem than can point us towards the selection of one of the

techniques as being preferable over all the others? Can

the performance of the selected technique be predicted?

This paper attempts to answer these questions.

The theory of Point Processes has been used for sta-
tistical analysis and estimation of data in many appli-

cations [7,18,14,24]. Its connection with classical MTT
techniques was first explored in the early developments
of Random Finite Sets statistics [4,14] and further de-

veloped later by Streit et al. [27,26,25]. Point Processes

now correspond to a general framework that encom-

passes the main target tracking approaches previously

mentioned. One important set of tools from the point
processes framework that relates all the techniques is
the probability generating functional (p.g.fl.). In [27],
Streit et al. uses p.g.fls. to outline in a clear and in-

tuitive manner the way in which different assumptions
about the state spaces and measurement spaces for a
large set of widely known techniques give rise to differ-

ent tracking approaches.

This work proposes a framework for predicting the

performance of MTT techniques applied to video se-

quences. The focus on video-based tracking stems from

the important applications that multiple target track-

ing on video sequence has in fields such as robotics,

surveillance, video game industry and sports broadcast-
ing [13]. It is also motivated by the possibility of objec-
tively measuring challenging characteristics of the video

per se [3], which can give us an implicit understanding

of the state and measurement spaces under considera-

tion. This information, in conjunction with the funda-

mental relationships described by probability generat-

ing functionals can be used as a framework for tracking
performance prediction. In this work we also comment
on the probability generating functional representation

for the Markov Chain Monte Carlo data association ap-

proach, which had not been introduced in [27], although

briefly mentioned in [26].

The remainder of this article is organized as fol-

lows. Section 2 introduces the general problem of mul-

tiple target tracking from the classical Bayesian point

of view using standard set definitions. It then describes

the Multiple Hypothesis tracker and the Markov Chain

Monte Carlo data association techniques, which we con-

sider pilot test techniques for our contribution. Section

3 presents the theoretical definition of point processes

and probability generating functionals, outlining their

relationship to the general target tracking problem. Sec-

tion 4 presents the main conceptual interpretation of

the probability generating functionals for multiple tar-

get tracking techniques as a transform that encodes
all the information provided by a measurement at a
given time instant. Section 5 shows the framework that
uses visual quality assessment techniques in combina-

tion with the introduced transform to obtain a quantity

that we cal tracker quality assessment (TQA), which

allows us to predict the performance of the tracking

mechanism. Finally sections 6 and 7 introduce experi-

mental results as well as conclusions and future work.

2 Multiple Target Tracking Problem

Let us start by introducing a general representation of

multi-target state spaces and measurement spaces. Let

S be a general state space for each of the targets x(tk).

At any given instant of time, the total number of targets

N̄(tk) is unknown. We can designate a region, R, which

defines the boundaries of the tracking problem. Given

this region we can then add an additional state φ to the

target state space S that denotes whether a target is
not inside the defined boundary R, then S+ = S ∪ {φ}
and this is true for each target, giving us a joint state

space S = S+ × · · · × S+ where the product is taken

N̄(tk) times. With this in mind we can represent the set

of targets at any given time tk > 0 taking into account

that new targets can be born

X(tk) = {x1(tk),x2(tk), ...,xn′(tk)} ∪ {b1, ...,bν}, (1)

where x(tk)1···n′ are the targets that persist from the

last instant of time and b1···ν are the new born targets.

For the measurement model we have the classical
representation yj,k = h(xj(tk), tk,v(tk)) for the jth

target, where v(tk) is the measurement noise. We can
extend this to a set of M̄ measurements that in gen-

eral can be produced from the targets in the set X or

by false alarms (clutter in the environment) or wrong

measurements. This set can be represented as

Yk = {y1,k, ...,yM̄,k}. (2)

The objective of multi-target Bayesian estimation in

this case is to estimate the contents of the set X(tk) re-

cursively, based on the set of observations Yk, using the

joint transition density for the state p(X(tk)|X(tk−1))

and the joint likelihood function p(Yk|X(tk)). We have
also the assumptions that are key to Bayesian esti-

mation and inference described for MTT. First, the

Markov assumption states that the values in any set

of states X(tk) are only influenced by the values of the

set of states that directly preceded it in time. This im-

plies that the future is independent of the past given
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knowledge about the present. In a continuous-discrete

setting, we have

p(X(t0:k)) =
k
∏

i=1

p(X(ti)|X(ti−1))p(X(t0)). (3)

We also have the conditional independence of the set

of observations, which states that the observation set,

Yk, given the state, X(tk), is conditionally independent

from the observation and state history, or

p(Y1:k|X(t0:k)) =

k
∏

i=1

p(Yi|X(ti)). (4)

Finally, the estimation process for multiple targets

ideally follows the same procedure as the single target

case but with the use of the joint densities of all the tar-

gets. That is, given the state at time step tk−1, Bayes’

theorem is used to determine the joint posterior den-

sity at time tk. This can be achieved in two steps as

described below.

Given the motion model and the Bayesian joint pos-

terior density p(X(tk−1)|Y1:k−1) at time tk−1, a time-
updated joint density is obtained using the Chapman-

Kolmogorov equation:

p(X(tk)|Y1:k−1) =

∫

p(X(tk)|X(tk−1))×

p(X(tk−1)|Y1:k−1)dX(tk−1). (5)

The observation set Yk is then used to update (weigh)

the density produced by the time-update step to deter-

mine the final joint posterior density at time tk:

p(X(tk)|Yk) =
p(Yk|X(tk))p(X(tk)|Y1:k−1)

p(Y1:k)
. (6)

The joint posterior density function p(X(tk)|Yk) en-
capsulates everything about the set of target states,

based on the current set of observations and a priori in-

formation. The calculations needed to obtain the exact

posterior of this unified estimation are even more chal-

lenging than in the single object case. Hence, the differ-

ent algorithms that have been designed to try to solve

them rely on additional assumptions that facilitate im-
plementations of sequential solutions. In the next sec-
tions we introduce two approaches that attempt to solve
this problem based on different assumptions: multi hy-

pothesis tracking and single scan Markov Chain Monte

Carlo data association.

2.1 Multiple Hypothesis Tracking

The Multi Hypothesis Tracker (MHT) is a method for

calculating the probabilities of various data association

hypotheses. It maintains several hypotheses for each

target at each instant of time. In order to do this,

this technique enumerates all possible associations over

time. As each measurement is obtained, it is classified

according to its probability of origin: coming from a

previously known target, from a false measurement, or

from a new target. The estimation of each possible hy-

pothesis is done through the Kalman filter (for Gaus-

sian transition densities as introduced in the original
literature [22]). As additional information (or measure-
ments) is collected, the probabilities of joint hypotheses
are calculated sequentially using all the prior knowl-

edge about the system such as the density of unknown

targets, probability of detection, and density of false

targets. This general technique is usually regarded as

a hypotheses-oriented or measurement-to-target (M →
T ) data association [30].

2.2 Single Scan Markov Chain Monte Carlo Data

Association

Markov Chain Monte Carlo (MCMC) data association
is an extension of the Joint Probabilistic data associ-
ation (JPDA) approach, which was designed to allow

a varying number of targets. The JPDA tackles uncer-

tain data association conditions by allowing a target to

be updated by a weighted sum of all the measurements

within a certain distance threshold of the target. The

weights represent the probability that the measurement
originates from that particular target. As such, a mea-
surement can contribute to more than one track, and

its contribution is weighted according to its association

probability. MCMC data association expands on this by

considering the space of all possible associations, where

each association event may correspond to three possible

conditions: deletion, addition (survival) or persistence

(move) [19]. The weights are calculated in a manner

similar to the JPDA but Monte Carlo methods, such

as Metropolis-Hastings sampling [11], are used to inte-

grate over the set and evaluate the probability of each

of the three conditions above.

3 Finite Point Processes and Probability

Generating Functionals

Finite point processes are usually introduced in the

framework of the theory of random measures. Let χ

be a topological space (complete, separable, metric). A

typical choice for χ is R
d, d > 0. The space of sets of

points or event space in χ is defined by

εχ = ∅ ∪
⋃

n≥1

χ(n), (7)
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where χ(n) is the space of sets of size n ∈ N, that is

χ(n) =
{

{x1, . . . ,xn}|xi ∈ χ, i = 1, . . . , n
}

. All its ele-
ments are assumed to be locally finite and each bounded

subset of χ can contain only a finite number of points

[24].

Although a point process is regarded as a random

(multi)set {xi}i ⊂ χ, it is technically convenient to for-

mally define it as a random measure Φ =
∑

i δxi
or the

mapping

Φ : (Ω,F ,P) → (εχ, B(εχ)), (8)

where (Ω,F ,P) is an arbitrary probability space and

B(εχ) denotes the Borel σ-algebra of εχ. Hence, if Φ
denotes the point process {φi}, we write Φ(A) for the

number of points φi that belong to a subset A ⊆ χ; sim-

ilarly, for suitable functions f on χ,
∫

f dΦ =
∑

i f(φi).

If Φ is a point process on χ, there exists a unique

Borel measure ν on χ such that EΦ(A) = ν(A) for every

Borel set A, and more generally E
∫

h dΦ =
∫

h dν for
every positive measurable function h. This measure ν is

called the intensity of Φ and it completely statistically
describes it.

Another descriptor of the point process comes from
the finite-dimensional distributions (‘fidi’) of a random

measure ξ that are the joint distributions, for all fi-

nite families of bounded Borel sets A1, . . . , Ak of the

random variables ξ(A1), . . . , ξ(Ak), that is the image of

the probability measure P, represented as PΦ [18].

Even though the notation for the spaces presented in
Section 2 and the definition of a point process above are

seemingly different, the nature of the state space Eq. (2)
and measurement sets Eq. (1) can be interpreted as a
point process. The change in cardinality (birth/death of

targets) at a given time represents a different counting

measure χ(n) in Eq. (7). Furthermore, both share the

∅ set that accounts for false targets or measurements.

Similar arguments can be presented for their probabil-

ity spaces and their interactions.

3.1 Probability Generating Functional

The information about a point process can be encoded

in an algebraic expression called a probability gener-

ating functional (p.g.fl). Before introducing the mathe-

matical definition of probability generating functionals,

it is important to introduce the most commonly known

concept of probability generating functions that is also

useful in the context of multiple target tracking.

Given a random variable X on the space (X,Bχ)
the probability generating function (p.g.f.) of X is the

function defined, for each z ∈ R, as E[zX ]

G(z) = E[zX ] =

∞
∑

x=0

p(x)zx. (9)

This of course can be extended to multiple dimensions
where (z1, . . . , zn) ∈ R

n. In order to introduce the gen-

eral mathematical formulation of the probability gener-

ating functional (p.g.fl.) we must first introduce V (χ)

the set of Bχ -measurable (test) functions h : χ → R

such that 1 − h(x) vanishes out of some bounded set

and 0 ≤ h(x) ≤ 1 for each x ∈ χ, with this the p.g.fl.

of a general point process Φ on the space χ is defined,

for each h ∈ V (χ) [24], as

Ψ [h] ≡ ΨΦ[h] = E

[

exp

(
∫

χ

log[h(x)]Φ(dx)

)]

. (10)

Since the process Φ is defined to be finite on the set
where 1− h(x) 6= 1 then it can be written as

Ψ [h] ≡ ΨΦ[h] = E

[

∏

i=1

h(xi)

]

, (11)

where xi are the points such that Φ =
∑

i δxi
, possibly

having repetitions in the (multi)set {xi}. In order to

realize this expected value, we resort to the fidi of the
point process, which allows us to rewrite the p.g.fl as
[37]

Ψ [h] ≡
∑

n≥0

∫

χ(n)

n
∏

i=1

h(xi)PΦ(d{x1, ...,xn}) (12)

=
∑

n≥0

1

n!

∫

χ(n)

n
∏

i=1

h(xi)pn(x1, ...,xn)dx1...dxn, (13)

where the final representation is obtained thanks to the

combinatorics interpenetration of a Janossy measure
[37] applied to the fidi. This representation can then
be extended to joint point processes, where a new pro-

cess Υ is introduced, with similar characteristics to Φ

but on space Y ∈ R
dy (in this application it can be con-

sidered as the measurement space and it has a mapping

to the state space). Thus, Eq. (13) can be extended to

the joint space and defined on εχ × ε
Υ
as the product

of the random measures

ΨΦΥ [g, h] ≡
∑

m≥0

∑

n≥0

1

m!n!

∫

Υm

∫

χn

m
∏

i=1

g(yi)
n
∏

i=1

h(xi)

pΦΥ (y1, ...,ym,x1, ...,xn)dy1...dymdx1...dxn, (14)

where g has the same definition as h as a vanishing test

function. Marginalizing this p.g.fl with respect to one

process results in the p.g.fl of the other process

ΨΦΥ [1, h] = ΨΦ[h] and ΨΦΥ [g, 1] = ΨΥ [g]. (15)
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4 Multiple Target Tracking Transform

The idea of a Multiple Target Tracking transform is

inspired by the fact that a generating function is an al-

gebraic tool for encoding combinatorial data [20]. With

this in mind, we can claim that the given p.g.fs and

p.g.fls encode all the combinational information of the

finite point process they represent. If it is assumed that

a tracking technique is a joint finite point process [27],

then its p.g.fl representation encodes all the information

pertinent to target and measurement existence and the

set of assumptions encoded within the technique. It is
also a fact that the test functions in which a p.g.fl is
evaluated are complex numbers (like any classical trans-

form), which in this case represent a space of “exis-

tence” for each target (on a z-transform for example it

represents a discrete time delay). This means that if a

target exists there is a complex number representing its

existence and the same occurs for measurements.

In order to use p.g.fls for the estimation of the state

of the targets, it is necessary to evaluate all these com-

plex variables (that vary on dimension too) as can be

seen in [26], which is the equivalent of finding the in-

verse transform for classical techniques. In our case, we

want to predict the performance of the technique, so

obviously we want to avoid performing all the steps in

the estimation processes. Instead, we rely on the p.g.fls,

which, if properly interpreted, provide us some insights

on how we can achieve a new simplified representation

for multi-target tracking performance prediction.

4.1 Brief Review of Important Probability Generating

Functionals

In order to make this article self-contained, we intro-
duce some important p.g.fl definitions. The p.g.fl of a
Poisson point process representing the clutter in the
measurements is given by

ΨPPP
C [g] = exp

(

−Λ+ Λ

∫

Y

g(y)pΛ(y)dy

)

, (16)

where Λ is the mean number of clutter points in Y (mea-

surement space) and pΛ(y) is the normalized intensity

function. For tracking applications these functions are

usually assumed constant in the window of observation.

The p.g.fl of a Bayes-Markov filter with probability

of miss-detections is given by (see section IV.A in [27])

ΨBMD[g, h] ≡

∫

S

h(x)µ(x)×

(

a(x) + b(x)

∫

Y

g(y)p(y|x)dy

)

dx. (17)

The different coefficients represent the probability of a

target state µ(x), likelihood of the measurement p(y|x),
probability of detection b(x) and probability of miss-

detection a(x).

When target births are taken into consideration, the
data-induced targets are represented by a process with

p.g.fl ΨData
BMD[g, h], which has the same functional form as

ΨBMD[g, h], but with the target density µ(x) replaced

by a prior distribution ξ(x). When evaluated under lin-

ear Gaussian assumptions, this process corresponds to

a regular Kalman filter.

4.2 Marginalized Transforms

The proposed simplified representation is based on the

application of Eq. (15) to the p.g.fl of the tracking tech-

niques under consideration. In this work we use the

MHT representation, which was previously introduced

by Streit et al. in [27]

Ψ [g, h1, ..., hn+m] = ΨPPP
C [g]

×
n
∏

i=1

[

1− χi + χiΨBMD(i)[g, hi]
]

×
m
∏

j=1

[

1− γj + γjΨ
Data
BMD(j)[g, hn+j ]

]

, (18)

where χi is the probability of existence, and γj is the

probability of birth from acquired data respectively.

As part of our contribution, we introduce the p.g.fl

for the MCMC approach, which has the same form as

the p.g.fl for MHT. It differs from the former, how-

ever, in the way the coefficients χ and γ are calculated,

as explained in Sections 2.1 and 2.2. The marginalized

transform for both the MHT and MCMC techniques is
therefore given by

Ψ [g] = ΨPPP
C [g] (1− χi + χiΨBMD[g])

n

×
(

1− γi + γiΨ
Data
BMD[g]

)m
, (19)

and it represents all the information encoded on each

measurement. In other words, it provides us a measure

of the amount of information that can be obtained from

a set of measurements on a given instant of time.

5 Framework for Tracker Performance

Prediction in Videos

The marginalized transform gives us general informa-

tion on the expected performance of a given tracking

techniques according to the measurements obtained. In

order to apply this information specifically to videos, we

introduce a framework that uses information encoded



6 Juan E. Tapiero et al.

within the video itself since this will affect the measure-

ments in a unique manner for each different scenario.

Our objective is to use the concept of video quality

assessment with the tracking technique in the role of

quality observer.

5.1 Visual Quality Assessment

Research in objective image quality assessment seeks to

design quantitative measures with the capability to au-

tomatically predict perceived image quality [35]. Once

developed, an objective image quality metric can be ap-

plied to an extensive range of practical uses. These ap-

plications include image acquisition, compression, com-

munication, displaying, printing, restoration, enhance-

ment, analysis, and watermarking.

In this work we apply two different and widely used

techniques which present different features. First we

have the blind/referenceless image spatial quality eval-

uator also known as BRISQUE [17], which is a nat-

ural scene statistic-based distortion-generic blind/no-

reference image quality assessment model that operates

in the spatial domain. We also incorporate the multi-

scale structural similarity (MS-SSIM) [36], which is an

extension of the structural similarity (SSIM) index [34].

SSIM uses structural distortion as an estimation of the

perceived visual distortion. In order to determine struc-

tural distortion, SSIM utilizes means, variances, and

the covariance of a reference and a given image. The

outputs of SSIM and MS-SSIM have similar numeri-

cal values over time but MS-SSIM has smaller absolute

variation since it takes in account more details of the

image. It is important to note that these techniques

were chosen because they perform quality assessment

on the spatial dimension of the image, where the track-

ing application is performed.

5.2 Tracker Quality Assessment

The process of incorporating the MTT transform into

a quality assessment framework consists of five steps

(shown in Figure 1). First, each frame is weighted by the

quality score obtained using BRISQUE. At the same

time, the detector that is going to be used for the track-
ing application is applied to each frame, obtaining real
measurements. These measurements are then used to
numerically compute the MTT transform in Eq. (19)

for each technique under consideration. In order to do

this, each measurement is assumed to represent a tar-

get with all the possibilities provided by the technique1.

1 Although this is a relatively strong assumption, it pro-
vides reasonable results. Making this assumption weaker is

The BRISQUE-weighted image is then modified by ap-

plying the weighting obtained by the transform, but

only in the pixel regions where measurement were ob-

tained. Finally the MS-SSIM is used to compare the

weighted images from the current frame to the previ-

ous one. Figure 2 shows one example of the weights

generated by the proposed framework for one snapshot

of the TUD-Stadtmitte dataset (see Figure 3). Darker
regions correspond to higher weight values. As the fig-
ure indicates, the proposed approach focuses on regions

where both target detections and image changes occur.

The tracker quality assessment (TQA) is the cumulative

difference of the output provided by MS-SSIM frame to

frame.

In practice, for usual applications of MS-SSIM the
higher its value the higher the quality of the image

under consideration, since the reference is the image
with perfect quality. The comparison here occurs on
a frame-by-frame basis, but the interpretation remains
the same, the larger the total change observed the higher

the quality of the tracking technique, which corresponds

to more efficient information encoding.

6 Experimental Results

In its simplest form, the evaluation of the tracker qual-

ity assessment is straightforward. Given a video sequence,

we can simply apply the tracker quality assessment frame-

work and obtain a quantity that predicts the expected

performance of the technique. In order to carry out this

experiment we need to run the tracking techniques on

the video sequence to have a real performance mea-
sure that can be compared with the prediction. For
this work, we use the optimal subpattern assignment
(OSPA) metric [23] since it has been widely used as

one of the main performance metrics for non-labeled

multiple target tracking applications. The implementa-

tion of the MHT tracker used in this paper is based

on the work of Antunes et al. [1] and the MCMC data
association is available in the toolbox by Särkkä et al.

[9]. Both methods were extended or modified to carry

out centroid tracking on videos with a constant veloc-

ity model [13]. In all of our experiments, we carried

out 15 Monte Carlo simulation trials for each tracking

scenario.

The video sequences analyzed are the widely utilized
and publicly available VSPETS 2003 INMOVE soccer

dataset2, the TUD-Stadtmitte dataset3, and the 2009

subject of future work, as explained in more detail in our
concluding remarks.
2 ftp://ftp.cs.rdg.ac.uk/pub/VS-PETS/
3 https://motchallenge.net/vis/TUD-Stadtmitte
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Fig. 1: Framework for the application of the MTT transform combined with visual quality assessment.

Fig. 2: Example of the tracker quality assessment
weights by generated by the proposed framework. The
method focuses on areas where detections occur.

BAHNHOF sequence which corresponds to a moving

camera scenario4. In the VSPETS dataset, we use a

red color detector to obtain the centroids of one of the

teams (Liverpool), which in general provides very ac-

curate measurements. For the TUD-Stadtmitte and the

BAHNHOF datasets, the targets are pedestrians and

the detections were carried out with using HOG [5]. In

these scenarios there is significantly more clutter and

the detection accuracy is not as high, particularly for

the moving camera case. The main assumption for the

transform evaluation is that a target is present wher-

ever a measurement is present (at marginalization) and

a transform value is calculated for each of them. Then

for each frame, if there are q measurements, we obtain

q transform values that are superposed since the mea-
surement space is unique. This also implies that the

values for m and n in Eq. (19) are assumed to be equal

to the number of measurements obtained at each frame.

4 https://data.vision.ee.ethz.ch/cvl/aess/dataset/

Table 1: Sets of assumption for the MCMC tracker in

the soccer scenario. cd is the clutter or false alarm den-

sity, pd is the probability of death, and pb is the prob-

ability of birth.

MCMC Assumption sets

1 cd = 1/1000 pd = 0.547 pb = 0.1
2 cd = 1/240 pd = 0.8 pb = 0.1
3 cd = 1/1000 pd = 0.9 pb = 0.1
4 cd = 1/100 pd = 0.9 pb = 0.1
5 cd = 1/3 pd = 0.547 pb = 0.8

The tracker quality assessment framework was used

to evaluate each tracker using different sets of basic as-

sumptions, such as varying the false alarm intensities,

the probability of detection and/or probability of birth.

Although every parameter of the tracking algorithms
could be varied for our evaluation, from the model and
measurement covariance to the birth densities or the

motion model itself, for simplicity and conciseness we

limit our analysis to the parameters shown in Table

1 and in Figure 4. For the soccer scenario, after ex-

tensive experimentation, it was found that changing

the false alarm density affects this specific MHT imple-

mentation the most, and hence that was the parameter

chosen for evaluation. In the case of the MCMC tech-

nique, varying a single parameter does not significantly

affect the tracker performance given its ability to more

thoroughly explore the hypothesis space. Hence, several

different assumption sets were evaluated, as shown in

Table 1.
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(a) Soccer scenario VSPETS 2003 INMOVE.

(b) Pedestrian scenario TUD-Stadtmitte.

(c) Moving camera scenario 2009 BAHNHOF.

Fig. 3: Snapshots of the datasets analyzed.

6.1 MTT Transform Coefficient Calculation

Before presenting numerical results, it is necessary to

introduce the expression for the calculation of the co-

efficients γ and χ since this is where the chosen tech-
niques, MHT and MCMC, differ in terms of their p.g.fl

and marginalized transform as was mentioned in sec-

tion 4.2. For a general linear (or approximately linear)

Gaussian assumption for likelihood and motion models,

the pseudocode to calculate the marginalized transform

for the techniques under evaluation is given in Algo-

rithm 1. In summary, the procedure consists of taking

a set of measurements and first calculating the Bayes-

Markov filter using the standard Kalman filter calcula-

tions of the mean, covariance and innovation (lines 5-9)

for existing and new targets. Lines 11 and 12 are the

calculation of the Bayes-Markov filter from Eq. (17) for

existing and new targets, with probabilities of detec-

tion and miss-detection ax and bx, respectively. After

evaluating the probabilities of existence and of birth in

lines 13 and 14, line 15 computes Eq. (19) for each tar-

get assumed to be present at a measurement (clutter

is included in χ and γ). The total transform is com-

puted by adding over the measurement space over the

m iterations of the algorithm.

Algorithm 1 Marginalized transform calculation.

1: while video is running do
2: Y ← set of measurements for current frame

⊲ Y is an l ×m matrix
3: Ψ = 0
4: for i = 1 to m do
5: x = Y i

⊲ Assume a target is present at each measurement
6: x+ = A · x
7: Y+ = H · x+

8: P+ = A · P0 ·AT +Q
9: S = H · P+ ·HT +R
10: BMD = ax · N (x|x+, P+) + bx · N (Yi|Y+, S)

⊲ Account for detection and model effects
11: Sdata = H · Pbirth ·HT +R
12: BMDdata = ax · N (x+|Mbirth, Pbirth)

+bx · N (Y+|Yi, Sdata)
⊲ Effects of birth density with normal distribution

with mean Mbirth and covariance Pbirth

13: Evaluate χ according to Eq. (20) or Eq. (22).
14: Evaluate γ according to Eq. (21) or Eq. (23).
15: Ψ = Ψ + (1− χ+ χ ∗BMD)m

· (1− γ + γ ∗BMDdata)
m

16: end for
17: end while

6.2 Multiple Hypothesis Tracking

For the MHT we need to introduce the expression for
the calculation of the coefficients γ and χ. Using the

Gaussian assumption and the expressions for hypothe-

sis evaluation from the MHT we have

χ
MHT

=
1

cd
·
ν!F !

Q̄!
· e−pb · pd ·

(

e−cd
)F

, (20)

γ
MHT

=
1

cd
·
ν!F !

Q̄!
· e−cd ·

(

e−pb
)ν

, (21)

where F is the number of false alarms, ν is the number

of new targets, Q̄ is the number of targets, and again pb
and pd are the probabilities of birth and death, respec-

tively and cd is the false alarm density [22,6]. All the
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former quantities are calculated using random sampling

according to the appropriate distribution: binomial dis-

tribution for ν, and Poisson distribution for F . Q̄ is ap-

proximated by the number of measurements for each

frame. It is important to remember that in this case

the probability of detection and the innovation proba-

bility density function are already taken into account

inside the Bayes-Markov filter portion of the marginal-
ized transform expression.

6.3 Markov Chain Monte Carlo

For the MCMC approach, the evaluation has a different

nature, since it depends on three conditions mentioned

in Section 2.2. In this case we have

χ
MCMC

= (1− pb) · pd · τ · C, (22)

γ
MCMC

= pb · (1− pd) · C, (23)

where pb is the probability of birth, pd is the probabil-

ity of death, τ is the target prior, and C is the clutter

prior for a target. The value for each of these variables

is calculated by performing a small Metropolis-Hastings

sampling [11] using the different assumptions present in

the implementation. To calculate those values, we used

the same criteria presented by Särkkä et al. in [9]. The

value of C is sampled from a Poisson distribution with

density cd and it is equal to the inverse of the surveil-

lance volume (in this case, the image area) if the target

is said to be a false alarm, otherwise it is one. τ depends

on sampling from a given target representing a false
alarm or existing target, and it is obtained by sampling

a Poisson distribution with intensity pb and assigning

the value of one minus the inverse of the surveillance

volume.

6.4 Numerical Results

In order to evaluate our hypothesis, we analyze three

sets of metrics. Total OSPA values are provided to demon-

strate the actual performance of the techniques using

the ground truth. It is computed by accumulating the
OSPA value of each video frame. Total MTT transform
represents the aggregated value of the transform eval-
uated for each frame. Finally, the TQA represents the

output of the framework presented in Section 5.2. All

quantities have been normalized by their largest value

in order to facilitate visualization and to facilitate the

comparison with the tracker performance.

In the soccer scenario, it can be observed in Fig-

ure 4.b that the normalized TQA (i.e., 1− log(NTQA))

does an excellent job predicting the performance for the

MHT technique, considering that smaller normalized
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Fig. 4: MHT results for the soccer scenario. NTT stands

for normalized total MTT, NT-OSPA is the normalized

total OSPA, and NTQA is the normalized TQA.

total OSPA values (NT-OSPA) correspond to better

overall performances. In this case the normalized total

MTT transform (NTT) also performs well (Figure 4.a),

but it is important to remember that it only takes in

account the detection and not the characteristics of the

video itself. For the MCMC tracker, we can observe in
Figure 7 a small variation on the performance predic-
tion for the first three sets of assumptions which is also

reflected on the actual OSPA. In general for this sce-

nario the TQA framework performs very well, mostly

due to the high quality of the measurements and the

low number of false alarms and video changes, given

the stationary camera.

In the pedestrian dataset, despite the more challeng-

ing scenario, which includes significant partial occlu-

sions, as well as the different detector, the TQA frame-

work can still predict the performance of the MHT

tracker very accurately as shown in Figure 5. Although

the TQA in Figure 5.a does not follow the OSPA as

closely as in the soccer scenario, it still reflects its growth

very accurately. Although the behavior of the NTT for

the pedestrian dataset shown in Figure 5.b might seem

identical to that for the soccer dataset (Fig. 4.b), it
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Fig. 5: MHT results for the pedestrian scenario.

should again be noted that these are normalized val-

ues. The absolute values of both transforms differ by

one order of magnitude. The maximum NTT value for

the soccer dataset is approximately 15, 000 whereas for

the pedestrian dataset it is close to 1, 000. This dif-
ference reflects the significantly more challenging con-

ditions seen in the second scenario. For the MCMC

method, it can be observed in Figure 8 that although

the TQA still reflects the decreased OSPA, it varies

slightly more slowly. In this case, since the targets are

quite large with respect to the background, the frame-

to-frame changes in the image tend to impact the TQA

more than in the soccer scenario. In this case, the NTT

(Figure 8.a) follows the decrease in OSPA more closely.

The moving camera scenario presents further chal-

lenges for the evaluated tracking techniques and that

can be seen on the TQA framework. For the MCMC

method, it can be observed that the variation of the

TQA value is smaller than the actual OSPA variation

and the trends are less precise than in the stationary

camera scenario (Figures 6.b and 9.b). On the other

hand, the transform presents a more accurate estimate

in this case, since it is not as affected by the even larger

frame to frame changes (Figures 6.a and 9.a). For the

sets of assumptions with relatively low OSPA (i.e., good
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Fig. 6: MHT results for the moving camera scenario.

performance), the TQA provides an accurate estimate

of performance. Although the TQA prediction is not as

accurate for higher values of OSPA, it still provides a

good estimate of the expected performance when used

in conjunction with the transform values.

7 Conclusions and Future Work

The mathematical framework of finite point processes

allows for the introduction of novel concepts that can

be used to produce compact representations of MTT

techniques. These representations can be used to ob-
tain more information about the nature of these tech-
niques and devise applications that go beyond simple

target tracking. We used these concepts to present a

new framework that allows us to predict the perfor-

mance of MTT techniques without performing track-

ing.

The MTT transform gives us an insight on how the

different assumptions of MTT techniques affect the way

in which the information content of the measurements

is used. Although the MTT transform by itself gives

us information about the effective use of the measure-

ments, it is not a complete prediction since the scenario

in which tracking occurs also affects the performance.
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Fig. 7: MCMC results for the soccer scenario.

Visual quality assessment techniques can therefore be

successfully integrated with the proposed transform to

give a more accurate performance prediction that takes

into account the problems of quality present in the

video sequences and its dynamic nature. Our experi-

ments demonstrated that the proposed framework can

successfully predict the tracking performance of two dif-

ferent tracking approaches, MHT and MCMC, as mea-

sured by the OSPA metric under different conditions.

In the future, we would like to extend our method
to make more accurate use of the measurements avail-

able at each image frame. In our current approach, each

measurement is associated with a potential target. One

possible strategy to mitigate this assumption would be

to perform local measurement clustering so that tar-

gets are associated with clusters of measurements in-

stead. Another area of potential improvement is the

possibility of applying different weights to the output

of BRISQUE and of the MTT to account for effects

such as highly dynamic backgrounds. This should al-

low us to further improve the accuracy of the TQA for

dynamic background scenarios such as when the camera

is moving.
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Fig. 8: MCMC results for the pedestrian scenario.
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