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Abstract This paper presents a framework to predict
the performance of multiple target tracking (MTT) tech-
niques. The framework is based on the mathematical
descriptors of point processes, the probability generat-
ing functional (p.g.). It is shown that conceptually the
p.g.s of MTT techniques can be interpreted as a trans-
form that can be marginalized to an expression that en-
codes all the information regarding the likelihood model
as well as the underlying assumptions present in a given
tracking technique. In order to use this approach for
tracker performance prediction in video sequences, a
framework that combines video quality assessment con-
cepts and the marginalized transform is introduced.
The multiple hypothesis tracker (MHT) and Markov
Chain Monte Carlo (MCMC) data association methods
are used as a test cases. We introduce their transforms
and perform a numerical comparison to predict their
performance under identical conditions.
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1 Introduction

The problem of Multiple Target Tracking (MTT) gen-
eralizes the notion of single target tracking and state
estimation [29,15] to more complex scenarios in which
the state of multiple elements must be estimated si-
multaneously. Since there is no uni�ed theory for single
target tracking and estimation, a number of distinct
MTT techniques have been proposed, each of which
imposes a certain set of assumptions on the problem
to make it tractable. Although a number of di�erent
approaches have been employed, most of them rely to
some extent on Bayesian probabilities. Today the most
widely used techniques can be divided into four sets of
�lters: Extensions of the Bayesian framework for single
target tracking [21] (classical examples are Multiple Hy-
pothesis Tracking [22], Joint Probabilistic Data Associ-
ation �lter [8], and Markov Chain Monte Carlo meth-
ods [19]), Random Finite Sets framework [14] (examples
are Probability Hypothesis Density �lters [32], Cardi-
nalized Probability Hypothesis Density �lters [31], and
Multi-Bernoulli �lters [33,10]), Point Processes frame-
work [28] (e.g. Intensity Filter) and heuristic imple-
mentations (e.g. Nearest neighbor standard �lter) [38].
Many additional examples for each of the frameworks
can be found in the literature and, given the renewed
interest in the data association problem, particularly in
the machine vision community [2,39], that number is
expected to continue to increase [12,16].

Despite the great progress made in recent years in
the area of MTT and the availability of a large num-
ber of algorithms to solve the problem, the choice of
MTT technique to be used on any given application
is usually made ad-hoc based on the familiarity of the
designer with a certain technique. Currently, there are
no mechanisms to help determine the chances of suc-
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cess of any tracking technique other than applying dif-
ferent methods to a certain problem and comparing
them using standard target tracking metrics. But could
there be some fundamental characteristics of the prob-
lem than can point us towards the selection of one of the
techniques as being preferable over all the others? Can
the performance of the selected technique be predicted?
This paper attempts to answer these questions.

The theory of Point Processes has been used for sta-
tistical analysis and estimation of data in many appli-
cations [7,18,14,24]. Its connection with classical MTT
techniques was �rst explored in the early developments
of Random Finite Sets statistics [4,14] and further de-
veloped later by Streit et al. [27,26,25]. Point Processes
now correspond to a general framework that encom-
passes the main target tracking approaches previously
mentioned. One important set of tools from the point
processes framework that relates all the techniques is
the probability generating functional (p.g..). In [27],
Streit et al. uses p.g.s. to outline in a clear and in-
tuitive manner the way in which di�erent assumptions
about the state spaces and measurement spaces for a
large set of widely known techniques give rise to di�er-
ent tracking approaches.

This work proposes a framework for predicting the
performance of MTT techniques applied to video se-
quences. The focus on video-based tracking stems from
the important applications that multiple target track-
ing on video sequence has in �elds such as robotics,
surveillance, video game industry and sports broadcast-
ing [13]. It is also motivated by the possibility of objec-
tively measuring challenging characteristics of the video
per se [3], which can give us an implicit understanding
of the state and measurement spaces under considera-
tion. This information, in conjunction with the funda-
mental relationships described by probability generat-
ing functionals can be used as a framework for tracking
performance prediction. In this work we also comment
on the probability generating functional representation
for the Markov Chain Monte Carlo data association ap-
proach, which had not been introduced in [27], although
briey mentioned in [26].

The remainder of this article is organized as fol-
lows. Section 2 introduces the general problem of mul-
tiple target tracking from the classical Bayesian point
of view using standard set de�nitions. It then describes
the Multiple Hypothesis tracker and the Markov Chain
Monte Carlo data association techniques, which we con-
sider pilot test techniques for our contribution. Section
3 presents the theoretical de�nition of point processes
and probability generating functionals, outlining their
relationship to the general target tracking problem. Sec-
tion 4 presents the main conceptual interpretation of

the probability generating functionals for multiple tar-
get tracking techniques as a transform that encodes
all the information provided by a measurement at a
given time instant. Section 5 shows the framework that
uses visual quality assessment techniques in combina-
tion with the introduced transform to obtain a quantity
that we cal tracker quality assessment (TQA), which
allows us to predict the performance of the tracking
mechanism. Finally sections 6 and 7 introduce experi-
mental results as well as conclusions and future work.

2 Multiple Target Tracking Problem

Let us start by introducing a general representation of
multi-target state spaces and measurement spaces. Let
S be a general state space for each of the targetsx(tk ).
At any given instant of time, the total number of targets
�N (tk ) is unknown. We can designate a region,R , which

de�nes the boundaries of the tracking problem. Given
this region we can then add an additional state� to the
target state spaceS that denotes whether a target is
not inside the de�ned boundary R, then S+ = S [ f � g
and this is true for each target, giving us a joint state
spaceS = S+ � � � � � S + where the product is taken
�N (tk ) times. With this in mind we can represent the set

of targets at any given time tk > 0 taking into account
that new targets can be born

X (tk ) = f x1(tk ); x2(tk ); :::; xn 0(tk )g [ f b1; :::; b � g; (1)

where x(tk )1��� n 0 are the targets that persist from the
last instant of time and b1��� � are the new born targets.

For the measurement model we have the classical
representation y j;k = h(x j (tk ); tk ; v (tk )) for the j th

target, where v(tk ) is the measurement noise. We can
extend this to a set of �M measurements that in gen-
eral can be produced from the targets in the setX or
by false alarms (clutter in the environment) or wrong
measurements. This set can be represented as

Y k = f y1;k ; :::; y �M;k g: (2)

The objective of multi-target Bayesian estimation in
this case is to estimate the contents of the setX (tk ) re-
cursively, based on the set of observationsY k , using the
joint transition density for the state p(X (tk )jX (tk � 1))
and the joint likelihood function p(Y k jX (tk )). We have
also the assumptions that are key to Bayesian esti-
mation and inference described for MTT. First, the
Markov assumption states that the values in any set
of statesX (tk ) are only inuenced by the values of the
set of states that directly preceded it in time. This im-
plies that the future is independent of the past given
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knowledge about the present. In a continuous-discrete
setting, we have

p(X (t0:k )) =
kY

i =1

p(X (t i )jX (t i � 1))p(X (t0)) : (3)

We also have the conditional independence of the set
of observations, which states that the observation set,
Y k , given the state,X (tk ), is conditionally independent
from the observation and state history, or

p(Y 1:k jX (t0:k )) =
kY

i =1

p(Y i jX (t i )) : (4)

Finally, the estimation process for multiple targets
ideally follows the same procedure as the single target
case but with the use of the joint densities of all the tar-
gets. That is, given the state at time step tk � 1, Bayes'
theorem is used to determine the joint posterior den-
sity at time tk . This can be achieved in two steps as
described below.

Given the motion model and the Bayesian joint pos-
terior density p(X (tk � 1)jY 1:k � 1) at time tk � 1, a time-
updated joint density is obtained using the Chapman-
Kolmogorov equation:

p(X (tk )jY 1:k � 1) =
Z

p(X (tk )jX (tk � 1)) �

p(X (tk � 1)jY 1:k � 1)dX (tk � 1): (5)

The observation setY k is then used to update (weigh)
the density produced by the time-update step to deter-
mine the �nal joint posterior density at time tk :

p(X (tk )jY k ) =
p(Y k jX (tk ))p(X (tk )jY 1:k � 1)

p(Y 1:k )
: (6)

The joint posterior density function p(X (tk )jY k ) en-
capsulates everything about the set of target states,
based on the current set of observations and a priori in-
formation. The calculations needed to obtain the exact
posterior of this uni�ed estimation are even more chal-
lenging than in the single object case. Hence, the di�er-
ent algorithms that have been designed to try to solve
them rely on additional assumptions that facilitate im-
plementations of sequential solutions. In the next sec-
tions we introduce two approaches that attempt to solve
this problem based on di�erent assumptions: multi hy-
pothesis tracking and single scan Markov Chain Monte
Carlo data association.

2.1 Multiple Hypothesis Tracking

The Multi Hypothesis Tracker (MHT) is a method for
calculating the probabilities of various data association
hypotheses. It maintains several hypotheses for each

target at each instant of time. In order to do this,
this technique enumerates all possible associations over
time. As each measurement is obtained, it is classi�ed
according to its probability of origin: coming from a
previously known target, from a false measurement, or
from a new target. The estimation of each possible hy-
pothesis is done through the Kalman �lter (for Gaus-
sian transition densities as introduced in the original
literature [22]). As additional information (or measure-
ments) is collected, the probabilities of joint hypotheses
are calculated sequentially using all the prior knowl-
edge about the system such as the density of unknown
targets, probability of detection, and density of false
targets. This general technique is usually regarded as
a hypotheses-oriented or measurement-to-target (M !
T) data association [30].

2.2 Single Scan Markov Chain Monte Carlo Data
Association

Markov Chain Monte Carlo (MCMC) data association
is an extension of the Joint Probabilistic data associ-
ation (JPDA) approach, which was designed to allow
a varying number of targets. The JPDA tackles uncer-
tain data association conditions by allowing a target to
be updated by a weighted sum of all the measurements
within a certain distance threshold of the target. The
weights represent the probability that the measurement
originates from that particular target. As such, a mea-
surement can contribute to more than one track, and
its contribution is weighted according to its association
probability. MCMC data association expands on this by
considering the space of all possible associations, where
each association event may correspond to three possible
conditions: deletion, addition (survival) or persistence
(move) [19]. The weights are calculated in a manner
similar to the JPDA but Monte Carlo methods, such
as Metropolis-Hastings sampling [11], are used to inte-
grate over the set and evaluate the probability of each
of the three conditions above.

3 Finite Point Processes and Probability
Generating Functionals

Finite point processes are usually introduced in the
framework of the theory of random measures. Let�
be a topological space (complete, separable, metric). A
typical choice for � is Rd, d > 0. The space of sets of
points or event space in� is de�ned by

" � = ; [
[

n � 1

� (n); (7)
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where � (n) is the space of sets of sizen 2 N, that is
� (n) =

�
f x1; : : : ; xn gjx i 2 �; i = 1 ; : : : ; n

	
. All its ele-

ments are assumed to be locally �nite and each bounded
subset of � can contain only a �nite number of points
[24].

Although a point process is regarded as a random
(multi)set f x i gi � � , it is technically convenient to for-
mally de�ne it as a random measure� =

P
i � x i or the

mapping

� : (
; F ; P) ! (" � ; B (" � )) ; (8)

where (
; F ; P) is an arbitrary probability space and
B (" � ) denotes the Borel � -algebra of " � . Hence, if �
denotes the point processf � i g, we write � (A) for the
number of points � i that belong to a subsetA � � ; sim-
ilarly, for suitable functions f on � ,

R
f d� =

P
i f (� i ).

If � is a point process on� , there exists a unique
Borel measure� on � such that E� (A) = � (A) for every
Borel set A, and more generallyE

R
h d� =

R
h d� for

every positive measurable functionh. This measure� is
called the intensity of � and it completely statistically
describes it.

Another descriptor of the point process comes from
the �nite-dimensional distributions (`�di') of a random
measure � that are the joint distributions, for all �-
nite families of bounded Borel setsA1; : : : ; Ak of the
random variables� (A1); : : : ; � (Ak ), that is the image of
the probability measure P, represented asP� [18].

Even though the notation for the spaces presented in
Section 2 and the de�nition of a point process above are
seemingly di�erent, the nature of the state space Eq. (2)
and measurement sets Eq. (1) can be interpreted as a
point process. The change in cardinality (birth/death of
targets) at a given time represents a di�erent counting
measure� (n) in Eq. (7). Furthermore, both share the
; set that accounts for false targets or measurements.
Similar arguments can be presented for their probabil-
ity spaces and their interactions.

3.1 Probability Generating Functional

The information about a point process can be encoded
in an algebraic expression called a probability gener-
ating functional (p.g.). Before introducing the mathe-
matical de�nition of probability generating functionals,
it is important to introduce the most commonly known
concept of probability generating functions that is also
useful in the context of multiple target tracking.

Given a random variable X on the space (X; B � )
the probability generating function (p.g.f.) of X is the

function de�ned, for each z 2 R, as E[zX ]

G(z) = E [zX ] =
1X

x =0

p(x)zx : (9)

This of course can be extended to multiple dimensions
where (z1; : : : ; zn ) 2 Rn . In order to introduce the gen-
eral mathematical formulation of the probability gener-
ating functional (p.g..) we must �rst introduce V(� )
the set of B � -measurable (test) functions h : � ! R
such that 1 � h(x) vanishes out of some bounded set
and 0 � h(x) � 1 for eachx 2 � , with this the p.g..
of a general point process� on the space� is de�ned,
for eachh 2 V(� ) [24], as

	 [h] � 	 � [h] = E
�
exp

� Z

�
log[h(x)]� (dx)

��
: (10)

Since the process� is de�ned to be �nite on the set
where 1� h(x) 6= 1 then it can be written as

	 [h] � 	 � [h] = E

"
Y

i =1

h(x i )

#

; (11)

where x i are the points such that � =
P

i � x i , possibly
having repetitions in the (multi)set f x i g. In order to
realize this expected value, we resort to the �di of the
point process, which allows us to rewrite the p.g. as
[37]

	 [h] �
X

n � 0

Z

� (n )

nY

i =1

h(x i )P� (df x1; :::; xn g) (12)

=
X

n � 0

1
n!

Z

� (n )

nY

i =1

h(x i )pn (x1; :::; xn )dx1:::dxn ; (13)

where the �nal representation is obtained thanks to the
combinatorics interpenetration of a Janossy measure
[37] applied to the �di. This representation can then
be extended to joint point processes, where a new pro-
cess� is introduced, with similar characteristics to �
but on spaceY 2 Rdy (in this application it can be con-
sidered as the measurement space and it has a mapping
to the state space). Thus, Eq. (13) can be extended to
the joint space and de�ned on " � � " � as the product
of the random measures

	 �� [g; h] �
X

m � 0

X

n � 0

1
m!n!

Z

� m

Z

� n

mY

i =1

g(y i )
nY

i =1

h(x i )

p�� (y1; :::; ym ; x1; :::; xn )dy1:::dym dx1:::dxn ; (14)

whereg has the same de�nition ash as a vanishing test
function. Marginalizing this p.g. with respect to one
process results in the p.g. of the other process

	 �� [1; h] = 	 � [h] and 	 �� [g; 1] = 	 � [g]: (15)
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4 Multiple Target Tracking Transform

The idea of a Multiple Target Tracking transform is
inspired by the fact that a generating function is an al-
gebraic tool for encoding combinatorial data [20]. With
this in mind, we can claim that the given p.g.fs and
p.g.s encode all the combinational information of the
�nite point process they represent. If it is assumed that
a tracking technique is a joint �nite point process [27],
then its p.g. representation encodes all the information
pertinent to target and measurement existence and the
set of assumptions encoded within the technique. It is
also a fact that the test functions in which a p.g. is
evaluated are complex numbers (like any classical trans-
form), which in this case represent a space of \exis-
tence" for each target (on a z-transform for example it
represents a discrete time delay). This means that if a
target exists there is a complex number representing its
existence and the same occurs for measurements.

In order to use p.g.s for the estimation of the state
of the targets, it is necessary to evaluate all these com-
plex variables (that vary on dimension too) as can be
seen in [26], which is the equivalent of �nding the in-
verse transform for classical techniques. In our case, we
want to predict the performance of the technique, so
obviously we want to avoid performing all the steps in
the estimation processes. Instead, we rely on the p.g.s,
which, if properly interpreted, provide us some insights
on how we can achieve a new simpli�ed representation
for multi-target tracking performance prediction.

4.1 Brief Review of Important Probability Generating
Functionals

In order to make this article self-contained, we intro-
duce some important p.g. de�nitions. The p.g. of a
Poisson point process representing the clutter in the
measurements is given by

	 P P P
C [g] = exp

�
� � + �

Z

Y
g(y )p� (y )dy

�
; (16)

where� is the mean number of clutter points inY (mea-
surement space) andp� (y ) is the normalized intensity
function. For tracking applications these functions are
usually assumed constant in the window of observation.

The p.g. of a Bayes-Markov �lter with probability
of miss-detections is given by (see section IV.A in [27])

	 BMD [g; h] �
Z

S
h(x)� (x) �

 

a(x) + b(x)
Z

Y
g(y )p(y jx)dy

!

dx: (17)

The di�erent coe�cients represent the probability of a
target state � (x), likelihood of the measurementp(y jx),
probability of detection b(x) and probability of miss-
detection a(x).

When target births are taken into consideration, the
data-induced targets are represented by a process with
p.g. 	 Data

BMD [g; h], which has the same functional form as
	 BMD [g; h], but with the target density � (x) replaced
by a prior distribution � (x). When evaluated under lin-
ear Gaussian assumptions, this process corresponds to
a regular Kalman �lter.

4.2 Marginalized Transforms

The proposed simpli�ed representation is based on the
application of Eq. (15) to the p.g. of the tracking tech-
niques under consideration. In this work we use the
MHT representation, which was previously introduced
by Streit et al. in [27]

	 [g; h1; :::; hn + m ] = 	 P P P
C [g]

�
nY

i =1

�
1 � � i + � i 	 BMD (i ) [g; hi ]

�

�
mY

j =1

h
1 �  j +  j 	 Data

BMD ( j ) [g; hn + j ]
i

; (18)

where � i is the probability of existence, and  j is the
probability of birth from acquired data respectively.

As part of our contribution, we introduce the p.g.
for the MCMC approach, which has the same form as
the p.g. for MHT. It di�ers from the former, how-
ever, in the way the coe�cients � and  are calculated,
as explained in Sections 2.1 and 2.2. The marginalized
transform for both the MHT and MCMC techniques is
therefore given by

	 [g] = 	 P P P
C [g] (1 � � i + � i 	 BMD [g])n

�
�
1 �  i +  i 	 Data

BMD [g]
� m

; (19)

and it represents all the information encoded on each
measurement. In other words, it provides us a measure
of the amount of information that can be obtained from
a set of measurements on a given instant of time.

5 Framework for Tracker Performance
Prediction in Videos

The marginalized transform gives us general informa-
tion on the expected performance of a given tracking
techniques according to the measurements obtained. In
order to apply this information speci�cally to videos, we
introduce a framework that uses information encoded
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within the video itself since this will a�ect the measure-
ments in a unique manner for each di�erent scenario.
Our objective is to use the concept of video quality
assessment with the tracking technique in the role of
quality observer.

5.1 Visual Quality Assessment

Research in objective image quality assessment seeks to
design quantitative measures with the capability to au-
tomatically predict perceived image quality [35]. Once
developed, an objective image quality metric can be ap-
plied to an extensive range of practical uses. These ap-
plications include image acquisition, compression, com-
munication, displaying, printing, restoration, enhance-
ment, analysis, and watermarking.

In this work we apply two di�erent and widely used
techniques which present di�erent features. First we
have the blind/referenceless image spatial quality eval-
uator also known as BRISQUE [17], which is a nat-
ural scene statistic-based distortion-generic blind/no-
reference image quality assessment model that operates
in the spatial domain. We also incorporate the multi-
scale structural similarity (MS-SSIM) [36], which is an
extension of the structural similarity (SSIM) index [34].
SSIM uses structural distortion as an estimation of the
perceived visual distortion. In order to determine struc-
tural distortion, SSIM utilizes means, variances, and
the covariance of a reference and a given image. The
outputs of SSIM and MS-SSIM have similar numeri-
cal values over time but MS-SSIM has smaller absolute
variation since it takes in account more details of the
image. It is important to note that these techniques
were chosen because they perform quality assessment
on the spatial dimension of the image, where the track-
ing application is performed.

5.2 Tracker Quality Assessment

The process of incorporating the MTT transform into
a quality assessment framework consists of �ve steps
(shown in Figure 1). First, each frame is weighted by the
quality score obtained using BRISQUE. At the same
time, the detector that is going to be used for the track-
ing application is applied to each frame, obtaining real
measurements. These measurements are then used to
numerically compute the MTT transform in Eq. (19)
for each technique under consideration. In order to do
this, each measurement is assumed to represent a tar-
get with all the possibilities provided by the technique1.

1 Although this is a relatively strong assumption, it pro-
vides reasonable results. Making this assumption weaker is

The BRISQUE-weighted image is then modi�ed by ap-
plying the weighting obtained by the transform, but
only in the pixel regions where measurement were ob-
tained. Finally the MS-SSIM is used to compare the
weighted images from the current frame to the previ-
ous one. Figure 2 shows one example of the weights
generated by the proposed framework for one snapshot
of the TUD-Stadtmitte dataset (see Figure 3). Darker
regions correspond to higher weight values. As the �g-
ure indicates, the proposed approach focuses on regions
where both target detections and image changes occur.
The tracker quality assessment (TQA) is the cumulative
di�erence of the output provided by MS-SSIM frame to
frame.

In practice, for usual applications of MS-SSIM the
higher its value the higher the quality of the image
under consideration, since the reference is the image
with perfect quality. The comparison here occurs on
a frame-by-frame basis, but the interpretation remains
the same, the larger the total change observed the higher
the quality of the tracking technique, which corresponds
to more e�cient information encoding.

6 Experimental Results

In its simplest form, the evaluation of the tracker qual-
ity assessment is straightforward. Given a video sequence,
we can simply apply the tracker quality assessment frame-
work and obtain a quantity that predicts the expected
performance of the technique. In order to carry out this
experiment we need to run the tracking techniques on
the video sequence to have a real performance mea-
sure that can be compared with the prediction. For
this work, we use the optimal subpattern assignment
(OSPA) metric [23] since it has been widely used as
one of the main performance metrics for non-labeled
multiple target tracking applications. The implementa-
tion of the MHT tracker used in this paper is based
on the work of Antunes et al. [1] and the MCMC data
association is available in the toolbox by S•arkk•a et al.
[9]. Both methods were extended or modi�ed to carry
out centroid tracking on videos with a constant veloc-
ity model [13]. In all of our experiments, we carried
out 15 Monte Carlo simulation trials for each tracking
scenario.

The video sequences analyzed are the widely utilized
and publicly available VSPETS 2003 INMOVE soccer
dataset2, the TUD-Stadtmitte dataset 3, and the 2009

subject of future work, as explained in more detail in our
concluding remarks.

2 ftp://ftp.cs.rdg.ac.uk/pub/VS-PETS/
3 https://motchallenge.net/vis/TUD-Stadtmitte
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Fig. 1: Framework for the application of the MTT transform combined with vi sual quality assessment.

Fig. 2: Example of the tracker quality assessment
weights by generated by the proposed framework. The
method focuses on areas where detections occur.

BAHNHOF sequence which corresponds to a moving
camera scenario4. In the VSPETS dataset, we use a
red color detector to obtain the centroids of one of the
teams (Liverpool), which in general provides very ac-
curate measurements. For the TUD-Stadtmitte and the
BAHNHOF datasets, the targets are pedestrians and
the detections were carried out with using HOG [5]. In
these scenarios there is signi�cantly more clutter and
the detection accuracy is not as high, particularly for
the moving camera case. The main assumption for the
transform evaluation is that a target is present wher-
ever a measurement is present (at marginalization) and
a transform value is calculated for each of them. Then
for each frame, if there areq measurements, we obtain
q transform values that are superposed since the mea-
surement space is unique. This also implies that the
values for m and n in Eq. (19) are assumed to be equal
to the number of measurements obtained at each frame.

4 https://data.vision.ee.ethz.ch/cvl/aess/dataset/

Table 1: Sets of assumption for the MCMC tracker in
the soccer scenario.cd is the clutter or false alarm den-
sity, pd is the probability of death, and pb is the prob-
ability of birth.

MCMC Assumption sets

1 cd = 1 =1000 pd = 0 :547 pb = 0 :1
2 cd = 1 =240 pd = 0 :8 pb = 0 :1
3 cd = 1 =1000 pd = 0 :9 pb = 0 :1
4 cd = 1 =100 pd = 0 :9 pb = 0 :1
5 cd = 1 =3 pd = 0 :547 pb = 0 :8

The tracker quality assessment framework was used
to evaluate each tracker using di�erent sets of basic as-
sumptions, such as varying the false alarm intensities,
the probability of detection and/or probability of birth.
Although every parameter of the tracking algorithms
could be varied for our evaluation, from the model and
measurement covariance to the birth densities or the
motion model itself, for simplicity and conciseness we
limit our analysis to the parameters shown in Table
1 and in Figure 4. For the soccer scenario, after ex-
tensive experimentation, it was found that changing
the false alarm density a�ects this speci�c MHT imple-
mentation the most, and hence that was the parameter
chosen for evaluation. In the case of the MCMC tech-
nique, varying a single parameter does not signi�cantly
a�ect the tracker performance given its ability to more
thoroughly explore the hypothesis space. Hence, several
di�erent assumption sets were evaluated, as shown in
Table 1.
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(a) Soccer scenario VSPETS 2003 INMOVE.

(b) Pedestrian scenario TUD-Stadtmitte.

(c) Moving camera scenario 2009 BAHNHOF.

Fig. 3: Snapshots of the datasets analyzed.

6.1 MTT Transform Coe�cient Calculation

Before presenting numerical results, it is necessary to
introduce the expression for the calculation of the co-
e�cients  and � since this is where the chosen tech-
niques, MHT and MCMC, di�er in terms of their p.g.
and marginalized transform as was mentioned in sec-
tion 4.2. For a general linear (or approximately linear)
Gaussian assumption for likelihood and motion models,
the pseudocode to calculate the marginalized transform
for the techniques under evaluation is given in Algo-
rithm 1. In summary, the procedure consists of taking

a set of measurements and �rst calculating the Bayes-
Markov �lter using the standard Kalman �lter calcula-
tions of the mean, covariance and innovation (lines 5-9)
for existing and new targets. Lines 11 and 12 are the
calculation of the Bayes-Markov �lter from Eq. (17) for
existing and new targets, with probabilities of detec-
tion and miss-detection ax and bx , respectively. After
evaluating the probabilities of existence and of birth in
lines 13 and 14, line 15 computes Eq. (19) for each tar-
get assumed to be present at a measurement (clutter
is included in � and  ). The total transform is com-
puted by adding over the measurement space over the
m iterations of the algorithm.

Algorithm 1 Marginalized transform calculation.
1: while video is running do
2: Y  set of measurements for current frame

. Y is an l � m matrix
3: 	 = 0
4: for i = 1 to m do
5: x = Y i

. Assume a target is present at each measurement
6: x + = A � x
7: Y+ = H � x +

8: P+ = A � P0 � A T + Q
9: S = H � P+ � H T + R

10: BMD = ax � N (x jx + ; P+ ) + bx � N (Yi jY+ ; S)
. Account for detection and model e�ects

11: Sdata = H � Pbirth � H T + R
12: BMD data = ax � N (x+ jM birth ; Pbirth )

+ bx � N (Y+ jYi ; Sdata )
. E�ects of birth density with normal distribution

with mean M birth and covariance Pbirth

13: Evaluate � according to Eq. (20) or Eq. (22).
14: Evaluate  according to Eq. (21) or Eq. (23).
15: 	 = 	 + (1 � � + � � BMD )m

� (1 �  +  � BMD data )m

16: end for
17: end while

6.2 Multiple Hypothesis Tracking

For the MHT we need to introduce the expression for
the calculation of the coe�cients  and � . Using the
Gaussian assumption and the expressions for hypothe-
sis evaluation from the MHT we have

� MHT =
1
cd

�
� !F !

�Q!
� e� pb � pd �

�
e� cd

� F
; (20)

 MHT =
1
cd

�
� !F !

�Q!
� e� cd �

�
e� pb

� �
; (21)

whereF is the number of false alarms,� is the number
of new targets, �Q is the number of targets, and againpb

and pd are the probabilities of birth and death, respec-
tively and cd is the false alarm density [22,6]. All the
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former quantities are calculated using random sampling
according to the appropriate distribution: binomial dis-
tribution for � , and Poisson distribution for F . �Q is ap-
proximated by the number of measurements for each
frame. It is important to remember that in this case
the probability of detection and the innovation proba-
bility density function are already taken into account
inside the Bayes-Markov �lter portion of the marginal-
ized transform expression.

6.3 Markov Chain Monte Carlo

For the MCMC approach, the evaluation has a di�erent
nature, since it depends on three conditions mentioned
in Section 2.2. In this case we have

� MCMC = (1 � pb) � pd � � � C; (22)

 MCMC = pb � (1 � pd) � C; (23)

where pb is the probability of birth, pd is the probabil-
ity of death, � is the target prior, and C is the clutter
prior for a target. The value for each of these variables
is calculated by performing a small Metropolis-Hastings
sampling [11] using the di�erent assumptions present in
the implementation. To calculate those values, we used
the same criteria presented by S•arkk•aet al. in [9]. The
value of C is sampled from a Poisson distribution with
density cd and it is equal to the inverse of the surveil-
lance volume (in this case, the image area) if the target
is said to be a false alarm, otherwise it is one.� depends
on sampling from a given target representing a false
alarm or existing target, and it is obtained by sampling
a Poisson distribution with intensity pb and assigning
the value of one minus the inverse of the surveillance
volume.

6.4 Numerical Results

In order to evaluate our hypothesis, we analyze three
sets of metrics. Total OSPA values are provided to demon-
strate the actual performance of the techniques using
the ground truth. It is computed by accumulating the
OSPA value of each video frame. Total MTT transform
represents the aggregated value of the transform eval-
uated for each frame. Finally, the TQA represents the
output of the framework presented in Section 5.2. All
quantities have been normalized by their largest value
in order to facilitate visualization and to facilitate the
comparison with the tracker performance.

In the soccer scenario, it can be observed in Fig-
ure 4.b that the normalized TQA (i.e., 1 � log(NTQA))
does an excellent job predicting the performance for the
MHT technique, considering that smaller normalized
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Fig. 4: MHT results for the soccer scenario. NTT stands
for normalized total MTT, NT-OSPA is the normalized
total OSPA, and NTQA is the normalized TQA.

total OSPA values (NT-OSPA) correspond to better
overall performances. In this case the normalized total
MTT transform (NTT) also performs well (Figure 4.a),
but it is important to remember that it only takes in
account the detection and not the characteristics of the
video itself. For the MCMC tracker, we can observe in
Figure 7 a small variation on the performance predic-
tion for the �rst three sets of assumptions which is also
reected on the actual OSPA. In general for this sce-
nario the TQA framework performs very well, mostly
due to the high quality of the measurements and the
low number of false alarms and video changes, given
the stationary camera.

In the pedestrian dataset, despite the more challeng-
ing scenario, which includes signi�cant partial occlu-
sions, as well as the di�erent detector, the TQA frame-
work can still predict the performance of the MHT
tracker very accurately as shown in Figure 5. Although
the TQA in Figure 5.a does not follow the OSPA as
closely as in the soccer scenario, it still reects its growth
very accurately. Although the behavior of the NTT for
the pedestrian dataset shown in Figure 5.b might seem
identical to that for the soccer dataset (Fig. 4.b), it
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Fig. 5: MHT results for the pedestrian scenario.

should again be noted that these are normalized val-
ues. The absolute values of both transforms di�er by
one order of magnitude. The maximum NTT value for
the soccer dataset is approximately 15; 000 whereas for
the pedestrian dataset it is close to 1; 000. This dif-
ference reects the signi�cantly more challenging con-
ditions seen in the second scenario. For the MCMC
method, it can be observed in Figure 8 that although
the TQA still reects the decreased OSPA, it varies
slightly more slowly. In this case, since the targets are
quite large with respect to the background, the frame-
to-frame changes in the image tend to impact the TQA
more than in the soccer scenario. In this case, the NTT
(Figure 8.a) follows the decrease in OSPA more closely.

The moving camera scenario presents further chal-
lenges for the evaluated tracking techniques and that
can be seen on the TQA framework. For the MCMC
method, it can be observed that the variation of the
TQA value is smaller than the actual OSPA variation
and the trends are less precise than in the stationary
camera scenario (Figures 6.b and 9.b). On the other
hand, the transform presents a more accurate estimate
in this case, since it is not as a�ected by the even larger
frame to frame changes (Figures 6.a and 9.a). For the
sets of assumptions with relatively low OSPA (i.e., good
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Fig. 6: MHT results for the moving camera scenario.

performance), the TQA provides an accurate estimate
of performance. Although the TQA prediction is not as
accurate for higher values of OSPA, it still provides a
good estimate of the expected performance when used
in conjunction with the transform values.

7 Conclusions and Future Work

The mathematical framework of �nite point processes
allows for the introduction of novel concepts that can
be used to produce compact representations of MTT
techniques. These representations can be used to ob-
tain more information about the nature of these tech-
niques and devise applications that go beyond simple
target tracking. We used these concepts to present a
new framework that allows us to predict the perfor-
mance of MTT techniques without performing track-
ing.

The MTT transform gives us an insight on how the
di�erent assumptions of MTT techniques a�ect the way
in which the information content of the measurements
is used. Although the MTT transform by itself gives
us information about the e�ective use of the measure-
ments, it is not a complete prediction since the scenario
in which tracking occurs also a�ects the performance.
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Fig. 7: MCMC results for the soccer scenario.

Visual quality assessment techniques can therefore be
successfully integrated with the proposed transform to
give a more accurate performance prediction that takes
into account the problems of quality present in the
video sequences and its dynamic nature. Our experi-
ments demonstrated that the proposed framework can
successfully predict the tracking performance of two dif-
ferent tracking approaches, MHT and MCMC, as mea-
sured by the OSPA metric under di�erent conditions.

In the future, we would like to extend our method
to make more accurate use of the measurements avail-
able at each image frame. In our current approach, each
measurement is associated with a potential target. One
possible strategy to mitigate this assumption would be
to perform local measurement clustering so that tar-
gets are associated with clusters of measurements in-
stead. Another area of potential improvement is the
possibility of applying di�erent weights to the output
of BRISQUE and of the MTT to account for e�ects
such as highly dynamic backgrounds. This should al-
low us to further improve the accuracy of the TQA for
dynamic background scenarios such as when the camera
is moving.
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Fig. 8: MCMC results for the pedestrian scenario.
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