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Abstract

This work takes important steps towards solving the following problem of current interest: Assuming that
each individual in a population can be modeled by a single frontal RGBD face image, is it possible to carry
out face recognition for such a population using multiple 2D images captured from arbitrary viewpoints?
Although the general problem as stated above is extremely challenging, it encompasses subproblems that
can be addressed today. The subproblems addressed in this work relate to: (1) Generating a large set of
viewpoint dependent face images from a single RGBD frontal image for each individual; (2) using hierarchical
approaches based on view-partitioned subspaces to represent this training data; and (3) based on these
hierarchical approaches, using a weighted voting algorithm to integrate the evidence collected from multiple
images of the same face as recorded from different viewpoints. We evaluate our methods on three datasets;
a dataset of 10 people that we created and two publicly available datasets which include a total of 48 people.
In addition to providing important insights into the nature of this problem, our results show that we are
able to successfully recognize faces with accuracies of 95% or higher, outperforming existing state-of-the-art
facial recognition approaches based on deep convolutional networks.

Keywords: Face recognition, Depth cameras, Manifold representations, Multi-view face recognition,
RGBD models

1. INTRODUCTION though there have been many attempts at automat-
ing face image normalization to replicate such results
in unconstrained scenarios, most methods that have

Face recognition is now considered a reliable and
been proposed to date are of questionable reliability.

nonintrusive biometric. Several algorithms that have

been proposed during the last decade can now achieve
accuracies that far exceed 90%. Such high levels of
accuracy, however, can only be obtained for ‘normal-
ized’ frontal face images. These algorithms perform
less than adequately when constraints are removed on
the orientation of the camera vis-a-vis the face. Al-
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The general problem of recognizing faces under un-
constrained conditions remains largely unsolved even
for seemingly easy scenarios such as when there is
sufficient illumination, the target motion is slow com-
pared to the camera frame rate, and high resolution
cameras are employed. A solution to this general
problem would be relevant in a number of scenar-
ios, which include face verification and identification
in static imagery [1, 2, 3], video [4, 5], and camera
networks [6, 7].

The problem of recognizing faces under uncon-
strained conditions, also known as face recognition
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in the wild, means assigning a face identity label to a
set of face images collected by an assortment of cam-
eras at random orientations with respect to a face.
Imagine a human subject being tracked by the cam-
eras at a crowded public place like an airport or a
city square. This problem has become very important
in recent years with the advent of camera networks.
Most major cities now have surveillance cameras in-
stalled in public places. As the reader can imagine, in
its most general form, it is an extremely challenging
problem. When we attempt to perform face recogni-
tion in images from video and other multi-view sce-
narios, there is no guarantee that any of the collected
images would constitute a full frontal view. In addi-
tion, we must also cope with other effects that are
caused, for example, by uncontrolled illumination.

While the difficulties mentioned above can be ex-
pected to degrade the performance of any face recog-
nition algorithm, one could raise the following ques-
tion: Is it possible to compensate for some of the
difficulties by leveraging the availability of multiple
images recorded from different viewpoints. That is,
whether multiple images from different viewpoints of
the same face can compensate for lack of a single
frontal image and for lack of controlled illumination.
It is this question that is the focus of this paper.
And, if the reader accepts the validity of the ques-
tion, the problem becomes one of how one should go
about pooling the visual evidence from the different
viewpoints for classifying a face.

Some previous approaches attempt to solve this
problem by resorting to the recent availability of large
scale datasets of labeled faces in the wild [8, 9, 10, 11].
While such approaches have obtained impressive re-
sults in such scenarios, achieving accuracies as high as
99.5% and surpassing the 97.53% accuracy obtained
by human observers, they suffer from two main lim-
itations. First, they fundamentally rely on the exis-
tence of such massive datasets for training purposes.
While such datasets might be readily available for
celebrities and other notorious personalities, gener-
ating such datasets for a broader population might
be challenging. We are more interested, therefore,
in a more practical scenario in which the classifier
can be trained with a single snapshot of the target.
Second, even when such large datasets are available,

these methods have been shown to map poorly to
alternative datasets collected from a general popula-
tion, which limits their practical applicability. In [11],
for example, the authors have shown that when their
approach based on multiple deep convolutional net-
works is applied to a real-world dataset of faces col-
lected by the authors, the accuracy falls to 66% com-
pared to the 99.5% accuracy obtained in the LFW
dataset.

This paper makes a small but important step in
our understanding of whether it is possible to at-
tempt face recognition under unconstrained condi-
tions when our training data consists of a single
frontal RGBD image of each human subject. Since,
as mentioned above, the general problem of uncon-
strained face recognition is quite broad, we focus
here on this particular subproblem in order to get
a better understanding of the issues involved in pool-
ing together the visual evidence from multiple view-
points. Within the context of our subproblem, given
the RGBD images, we are faced with issues such
as how to best extract viewpoint oriented 2D im-
ages from the models; how to best extract class dis-
criminatory information from the 2D images that are
likely to reside on low-dimensional manifolds in high-
dimensional measurement spaces [12, 13, 14]; and,
finally, how to construct a classifier that makes an
identity decision based on a set of test face images
collected from random viewpoints.

In order to solve these problems, we first create
multi-view training data from single RGBD images
of the human face. We then view-partition the man-
ifolds where the data resides in order to identify the
optimal subspaces in which groups of similar faces
can be found. We explore two different approaches
for view-partitioning the training data: pose based
and appearance based.

Subsequently, we investigate how to best carry
out multi-view classification by comparing the view-
partitioned approaches to global approaches to multi-
view classification. We study two different types of
global approaches, one in which all of the training
data for all human subjects is thrown into a single
global subspace, and the other in which we create
a person-specific global subspace separately for each
human subject.



Finally, the view-partitioned approaches create the
possibility of carrying out weighted voting when com-
bining the classification labels for each of the query
images into a single identity label. We do so by de-
vising a weighting mechanism that uses the recon-
struction error of a query image with respect to the
different views in order to determine its weight when
used in a multi-view classification mechanism.

This paper makes four main contributions. First, it
presents a novel hierarchical approach for multi-view
facial recognition. Second, it proposes a weighted
voting scheme to improve face recognition by com-
bining face images from different viewpoints. Third,
anew dataset of RGBD face images for the evaluation
of multi-view face recognition is introduced. Finally,
the paper includes an extensive evaluation and anal-
ysis of several mechanisms to perform data clustering
and classification for the purpose of facial recognition.

The remainder of this paper is organized as follows.
Section 2 discusses some of the most relevant works
related to the topic of face recognition in relatively
unconstrained scenarios such as in videos and cam-
era networks. Section 3 proposes several approaches
to construct facial recognition algorithms that can
be trained from a single RGBD image of each tar-
get subject, and Section 4 discusses the method we
employ to combine the classification results obtained
from several query images. An extensive experimen-
tal evaluation is then presented in Section 5, which is
then followed by our concluding remarks in Section
6.

2. PRIOR WORK

Dealing with face recognition using non-frontal im-
agery at test time generally requires constructing par-
tial or full 3D models of the human head and mor-
phing the models in order to best describe the test
images. For the case of static imagery, there are two
different classes of algorithms that come under this
category. In the first class, the training protocol in-
cludes generating off-normal images of the face by di-
rectly applying a pose-transform to the frontal image
[15, 16, 17]. At test time, the recognizer first locates
prominent facial features and then uses these loca-
tions to geometrically register the input with multi-

ple example views. Subsequently, a correlation based
operation is used to find the best match from the
database. In the second approach, the goal is to use
some sort of a range sensor to create a generic 3D
point cloud model of either the whole head or of a
set of salient points on the head [18, 19, 20, 21, 22|.
Subsequently, this model, along with the accompany-
ing texture information, can be manipulated to cre-
ate off-normal training images for a human subject.
At test time, a query image is generally manually
annotated for the salient features of a face and the
3D model morphed to fit to the query image through
these salient points.

2.1. Recognizing Faces in Videos

Recognizing a face in a video involves the follow-
ing processes that may need to run simultaneously:
a tracking/detection mechanism, a crucial alignment
step, and a recognition algorithm, which generally
attempts to exploit the availability of multiple image
frames. All of these are complex and are active sub-
jects of ongoing research [23, 24, 25, 26, 27, 28, 29, 30].
Regarding face tracking, a comprehensive survey of
existing approaches is given in [31]. In a particu-
larly relevant example, Marras et al. [32] proposed
a particle filtering method that uses the reconstruc-
tion error from learned subspaces to determine fa-
cial orientation. As for face detection, although it
is still a largely unsolved problem, during the past
decade, much progress has been made in this area
[33, 34, 35, 36]. While face detection is generally
regarded as the starting point for all facial analysis
tasks [37], face alignment can be regarded as an im-
portant and essential intermediate step for many sub-
sequent higher level tasks that range from biometric
recognition to mental state understanding. We dis-
cuss the issue of facial alignment in more detail below

2.1.1. Facial Alignment

The problem of face alignment is a well-studied
area of computer vision that has created a wealth of
scientific research. Countless applications [26, 27, 29,
38, 39], and a large number of approaches have been
proposed to tackle it. Face alignment is widely used
by face recognition algorithms to improve their ro-
bustness against pose variations. For example, in the



stage of face registration, the first step is usually to
locate prominent facial points and use them as anchor
points for affine warping, while other face recognition
algorithms, such as feature-based (structural) match-
ing [2, 40], rely on accurate face alignment to build
the correspondence among local features (e.g. eyes,
nose, mouth, etc.) to be matched.

Over the last two decades, numerous techniques
have been developed for face alignment with varying
degrees of success. Celiktutan et al. [41] surveyed
many traditional methods for face alignments of both
2D and 3D faces. More recently, Yang et al. [42]
provided an empirical study of recent face alignment
methods, aiming to draw some empirical yet useful
conclusions and make insightful suggestions for prac-
tical applications. In general terms, face alignment
can be formulated as a problem of searching over a
face image for pre-defined feature points (also called
face shape), which typically starts from a coarse ini-
tial shape, and proceeds by refining the shape es-
timate step by step until convergence. During the
search process, two different sources of information
are typically used: facial appearance and shape in-
formation. In particular, typically, faces are mod-
eled as deformable objects which can vary in terms
of shape and appearance. Much of the early work
revolved around Active Shapes Models (ASMs) and
Active Appearance Models (AAMs) [30, 43, 44]. In
ASMs, facial shape is expressed as a linear combina-
tion of shape bases learned via Principal Component
Analysis (PCA), while appearance is modeled locally
using (most commonly) discriminatively learned tem-
plates.

AAMs, first proposed by Cootes et al. [43], are
linear statistical models of both the shape and the
appearance of the deformable object. They are able
to generate a variety of instances by a small number
of model parameters, and therefore have been widely
used in many computer vision tasks, such as face
recognition [45], object tracking [46], and medical im-
age analysis [47]. Despite their popularity and suc-
cess, AAMs have been traditionally criticized for the
limited representational power of their holistic repre-
sentation especially when used in unconstrained con-
ditions. One possible way to overcome these draw-
backs is to use part-based representations, due to the

observation that local features are generally not as
sensitive as global features to lighting and occlusion.
ASMs are a notable example is of part-based models
[48, 44], which combines the generative appearance
model for each facial part and the Point Distribution
Model for global shapes. More recently, the focus
has shifted to a family of methods known as Con-
strained Local Models (CLMs) [49, 50, 51] that build
upon ASM to model individual facial parts using dis-
criminatively trained local detectors [51, 52, 53, 54].
In the training phase, a CLM learns an independent
local detector for each facial point, and also a prior
shape model to characterize the deformation of face
shapes. For testing, face alignment is typically for-
mulated as an optimization problem to find the best
fit of the shape model to the test image.

Research in multi-view face recognition has been
significantly influenced by the availability of large an-
notated datasets consisting of face images recorded
under unconstrained conditions [55, 56, 57, 58, 59,
60]. For example, these datasets have been used to
develop a variety of cascaded regression-based tech-
niques [61, 62, 63, 64, 38, 65, 66, 67, 68] which have
proved very successful in solving the face pose align-
ment problem. The motivation behind cascaded re-
gression is that, since performing regression from im-
age features to face shape in one step is extremely
challenging, we can divide the regression process into
stages, by learning a cascade of vectorial regressors.
As in related computer vision tasks such as human
pose estimation [69, 70], such methods are particu-
larly successful when associated with generative de-
formable part models [61]. Despite the substantial
progress made in facial alignment in recent years,
it is still unclear whether the ability to determine
the orientation of a face may eventually translate
into more accurate facial recognition approaches for
unconstrained scenarios in which face orientations
may vary dramatically and frontal reconstructions
are bound to be heavily distorted.

2.1.2. Exploiting Multiple Image Frames for Video-
based Facial Recognition
Rather than attempting to carry out face frontal-
ization on each frame, most video-based facial recog-
nition approaches try to leverage the availability of



multiple images of the face, generally at a variety of
poses and under different illuminations to improve
the detection performance.

A well-known approach to overcome the problem
of pose and illumination changes consists of record-
ing training videos of the human subjects and, sub-
sequently, using the frames of training videos as the
gallery of images for each subject in the database. At
test time, a query video recording is compared with
all of the images in the database. In fact, the test con-
sists of comparing each frame of the query video with
all the images in the database and accumulating the
matching scores for the query video [71, 72, 73, 74].

Instead of performing face recognition based on
a frame-by-frame analysis of the training and test
data, it is also possible to treat a video as a tempo-
ral stream in the three dimensional space formed by
two spatial and one temporal coordinates. One can
analyze this 3D space holistically to extract informa-
tion that characterizes the dynamic properties of a
face. Zhou et al. [75] pioneered that kind of work
by tracking the subjects in the videos and extract-
ing their faces to construct priors for the different
views of the different faces. Lee et al. [5] focused
on automatically learning the transition probabilities
between the different possible appearances of a face
in a video. Along the same lines, Liu et al. [76] used a
Hidden Markov Model (HMM) for modeling the face
appearance along with the head pose changes in the
training videos for each human subject.

Another class of methods, the so-called ensemble
approaches, focuses on the fact that a query video,
when treated as a stream of temporal information,
may not correspond to any of the gallery videos
recorded previously for all of the human subjects
[77,78,79, 80, 81, 82, 73]. So at test time, a frame-by-
frame comparison between the query video and the
gallery videos is carried out to create virtual gallery
videos for each human subject using the gallery video
frames that are most similar to the query video. Sub-
sequently, face recognition is based on comparing the
query video with the virtual gallery videos for the
different human subjects.

2.2. Multi-Camera and Multi- View Face Recognition
— Recognizing Faces in the Wild

Superficially it may seem that there should be no
difference between multi-camera (or multi-view) face
recognition and video face recognition. As it turns
out, the two are very different because, with video,
the variations in the viewpoints are bound to be lo-
calized to where the camera happens to be. On the
other hand, when you have multiple cameras view-
ing the same subject, they could be mounted at spa-
tially dispersed locations. One typical example are
the cameras mounted at an airport that are tracking
the same human subject with the goal of identifying
the individual from the snippets of images recorded
by the cameras. The multi-camera face recognition
research can be divided into the following two cate-
gories: when a face to be recognized is in the inter-
section of the fields of view of all the cameras, and
when that is not the case. We briefly discuss both
cases below.

For the case of multi-camera face recognition when
a face is in the intersection of the fields of view of
all the cameras, most works focus on choosing the
view that provides the most reliable evidence for
recognizing a face and subsequently using a tradi-
tional approach for carrying out the recognition task
[83, 84, 85]. In [85], for example, the reliability of
each camera depends on how well both face detec-
tion and recognition can be carried out. Subspace
learning methods provide one tool to determine the
orientation of a face. Li et al. [86] proposed one
of the first approaches for clustering faces into sub-
spaces according to their poses. Their method was
based on a supervised version of Independent Sub-
space Analysis (s-ISA). Although their experiments
indicate that s-ICA provides better face pose classi-
fication than Principal Component Analysis (PCA),
Independent Component Analysis (ICA), and Topo-
graphic Independent Component Analysis (TICA),
the results are largely qualitative. Kan et al. [87]
proposed a method that finds optimal linear trans-
formations to map images from different views (or
different sensing modalities) into a common subspace.
Their approach shows performance improvement over
previous linear subspace learning approaches such as
[88], but their multi-view classification evaluation is



restricted to the range [—45°,+45°]. In addition,
manifold learning approaches have been shown to be
more robust and have better generalization capabil-
ities than linear methods such as ISA [89, 90, 91].
Furthermore, none of the methods mentioned above
is concerned with the problem of incorporating multi-
ple query images from different perspectives into the
classification problem.

While not directly applicable to the multipose face
recognition problem, another related non-linear sub-
space learning approach was proposed by Goudelis
et al. in [92]. In that work, the authors proposed
a face verification (i.e., binary recognition) method
which employs a kernelized discriminant that max-
imizes impostor distance measures while minimiz-
ing the client (i.e., non-impostor) distance measure.
Their method showed impressive single-digit equal er-
ror rates (ERR) in several challenging datasets with
varying face poses.

When there is no overlap between the view-fields
of the cameras involved, person re-identification be-
comes a fundamental issue in multi-camera face
recognition [93, 94, 95, 96, 97, 98, 99, 100]. The no-
tion of re-identification addresses the following issue
related to face recognition in the wild: If a group
of people is being tracked by a network of non-
overlapping cameras, how can we ensure that the face
fragments extracted from two different cameras be-
long to the same individual? Person re-identification
is a complex problem on its own and is currently a
subject of active research. It is, however, beyond the
scope of the work reported in this paper. Obviously,
after collecting the face fragments for each individ-
ual, there remains the problem of aggregating the
evidence and attempting final face recognition. This
aggregation problem is one of the issues this paper
attempts to solve.

A few recent contributions focus on aggregating
the evidence provided by the individual cameras in a
multi-camera approach to face detection and recogni-
tion. In [7], An et al. aggregate the information from
different cameras with the help of a dynamic Bayesian
network, which contains a node for each camera and
a node for each human subject the system is expected
to recognize. At training time, the structure of the
network and its parameters are learned with person-

specific dynamics from the gallery videos. At test
time, faces are recognized by maximizing the poste-
rior probabilities derived from the camera and the
human subject nodes. Du et al. [6] aggregate ev-
idence in multi-camera scenarios by tracking a hu-
man head from camera to camera. The head model
used in this work is a texture-mapped sphere repre-
sented by spherical harmonics. Recognition is carried
out by comparing the head model coefficients of the
training images with those that apply to a test sub-
ject. Another approach that tracks a head and then
associates a pose with it was proposed by Harguess
et al. [101]. At training time, all frontal images ob-
tained from multiple cameras are used for building
a generic cylinder head model and a lower dimen-
sional subspace. At test time, the pose of the head
is estimated through the cylinder head model that is
constructed during the training process. This pose
is used to weight the reliability of a partial view of
a query face assuming that the reliability goes down
as the query viewpoint moves away from the frontal
view.

3. VIEW PARTITIONED SUBSPACES FOR
MULTI-SUBJECT FACE DATA

As stated above, the main problem that this pa-
per investigates is that of face recognition from a set
of partial views as recorded by a spatially distributed
network of cameras. In order to discriminate between
the faces of different individuals, we use a vector rep-
resentation for the images so that each image is re-
garded as a point in a high D-dimensional space. In
order to cope with the curse of dimensionality, we
want to create lower dimensional representations of
the faces, but do so in such a way that the discrimi-
natory information between the faces is not lost. As
already alluded to in the previous sections, face data
when collected from different viewpoints is likely to
reside on manifolds and any dimensionality reduction
approach must take into account the structure of the
manifold — in both the original measurement space
and in the target low-dimensional space. So the first
research issue faced is how to represent the training
data for the different individuals in a manifold-based
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Figure 1: Variations of the view partitioned subspace model
for multi-subject face images.

low-dimensional representation. We address this is-
sue by creating multiple view partitioned subspaces.
By view partitioning we mean simply dividing the
view sphere according to some criterion.

The goal of the present section is to introduce two
criteria for partitioning the training data for sub-
space construction. The first is based on the pose
parameters associated with the training images; the
second uses the appearance similarity of the images.
We have previously used both of these approaches
for solving the simpler problem of head pose estima-
tion [102]. Our conclusion in that study was that,
for the purpose of pose estimation, the appearance
based partitioning method produced better results
than the pose based partitioning method. For the
purpose of face recognition, we must now also factor
in the person-to-person image variations. In this con-
text, for each partition of the training dataset, we can
either construct a single subspace for all the individ-
uals in the database, or we can create person-specific
subspaces. Figure 1 illustrates these variations on the
top-level pose-based and appearance-based subspace
construction techniques. We will discuss each of the
boxes in Figure 1 in detail later in this section.

Before focusing on the issue of how best to con-
struct the subspaces, we are faced with the serious
challenge of accumulating a large number of view-

(a)

Figure 2: The sequence of steps for generating a pose-
transformed version of a frontal RGBD image: (a) the orig-
inal RGBD image for the frontal pose (the RGB data is shown
on the left side and the depth is shown on the right); (b) pose
transformed and projected result from the data in (a); (c) 2.5D
interpolated result.

point variant images of the faces of different individ-
uals for training purposes. In this paper, we have
solved this problem by recording a single RGBD im-
age for each individual in the database and then syn-
thetically generating all the needed viewpoint variant
images from the recorded RGBD image. In the next
section we briefly discuss this process.

3.1. Creating Viewpoint Based Face Images from a
Single Frontal RGBD Scan of a Human Subject

As we have previously described in [102], the 3D
position (X,Y, Z) associated with an RGBD “pixel”
at the raster coordinates (z,y) is given by:

ZD ZD
fe fe

where Zp is the depth value recorded by the sensor,
fc is the focal length, and u, and u, are the cen-
ter coordinates of the image plane. Given the 3D
points obtained in this manner, we first remove the
background by thresholding the point cloud accord-
ing to its depth histogram using Otsu’s algorithm
[103]. The foreground, i.e., the set of points with Z
coordinate lower than Otsu’s threshold, corresponds
to the 3D points on the surface of a face (Figure 2
(a))-

The resulting 3D point cloud model is simply a
collection of 9-dimensional vectors of the form M =
[X2p,Zp, X3p, Vrap]!, where xop and Zp are a
matrix of (z,y) pixel positions and their correspond-
ing depth values, X3p contains the three spatial co-
ordinates and V grgp contains the three color values.

X =

(x_um’)a Y =- (y_uy), Z = Zp, (1)



This cloud model includes 2D-3D correspondence in-
formation with texture data. Given a single RGBD
image of the frontal pose, we generate T training im-
ages by first applying T pose transformations to its
point cloud, and then projecting the resulting point
clouds back on the camera image plane. The process
to generate a virtual view image I; is described by

I =T (K[I|0"]G(p)Xsp ), (2)

where K is the intrinsic camera calibration matrix,
T () stands for the conversion from the vectorized im-
age with RGB values to the 2D image on the camera
image plane, G(-) is the 3D transformation includ-

ing the translation parameters t = [ ¢, ¢, ¢, |7
and the Euler rotation matrix R computed from the
rotation parameters @ = [ 0,, 0., 0,, |7 as
R t
6w~ ot 1 |- )
wherep=1[ 0,5 0y 0., t; t, t.]isthe pose

parameter vector. In short, given a model M, RGB
values with respect to 3D points are matched to a new
2D image plane by transformation and projection.

Generating 2D images projected from rotated 3D
points has two general problems to be considered.
First, some 3D points in the model can overlap in a
projected image plane. To handle this, only the clos-
est sample to the camera is projected to the image
plane. Second, when a pose-transformed point cloud
is projected back onto the camera image plane, one
often ends up with “holes” on account of the variable
depth resolution of an RGBD sensor. An example of
this effect is shown in Figure 2 (b), which illustrates
a pose-transformed version of the frontal RGBD im-
age. We eliminate such holes by applying bilinear in-
terpolation to neighboring points using the constraint
that the points used for bilinear interpolation possess
roughly the same depth values. Figure 2 (c) shows
a projection when such interpolation is a part of the
projection operator. Figure 3 shows additional ex-
amples of the training images generated according to
this process.

Figure 3: Examples of generated training images for one sub-
ject.

3.2. Applying ISOMAP for Clustering Multi-subject
Face Images

When face images are viewed from different di-
rections, the image data falls on a low-dimensional
manifold in a high-dimensional measurement space
[12, 13, 14]. It is this fact that is responsible for much
interest in topics such as manifold-based learning and
data clustering [104, 105, 106, 107, 89, 108, 109].
Much of this work is based on the intuition that if we
could first create an appropriate low-dimensional rep-
resentation for the underlying manifold, that would
simplify the logic needed for establishing the decision
boundaries required for the classification of the data.

We have previously investigated three of the main
methods existing today for understanding data on
manifolds, namely: 1) Locally Linear Embedding
(LLE) [107]; 2) ISOMAP [89]; and 3) Representations
that can be obtained by the Kambhatla and Leen al-
gorithm [106]. Our study concluded that ISOMAP
gives us the best partitioning of the data in terms of
giving us the least average reconstruction error in the
subspaces in each of the view partitions of the data
[110]. The goal in this section is to demonstrate the
clustering that is achieved when ISOMAP is applied
to the multi-subject face images.

As described in the previous section, we record a
single frontal RGBD scan for each human subject
and then create viewpoint dependent training images
from the scan by applying an appropriate projection
transform to the scan. The clustering results we show
in this section were obtained on the image data col-
lected in this manner. These results involve the train-
ing images collected from the RGBD scans for the
three subjects shown in Figure 4 (a).

Note the manifold structure for each of the three
subjects in Figure 4 (b) in the space spanned by the
three leading eigenvectors when all of the data for
all three subjects is subject to a PCA based dimen-



sionality reduction. Each subject-specific manifold
in this figure is illustrated with a different color that
matches the color of the border for the corresponding
human subject in (a). As the reader can see, all three
manifolds look similar globally. However, when the
manifolds are examined more carefully by focusing
on the local curvatures, one can see the differences
between the three that are caused by the different fa-
cial features, eyewear, etc. Shown in (c) is the mean
manifold for the three subjects. The mean manifold
is obtained by averaging the three principal coordi-
nates in the 3D PCA space on the basis of the identity
of the pose labels associated with the images. Note
that Figures 4 (a), (b), and (c) are just for human
visualization of the structure of the image data for
the three human subjects.

With regard to the dimensionality reduction of this
face data with ISOMAP, the extent to which the al-
gorithm can capture both the global shape variations
in the manifolds shown in Figure 4 (b) and, at the
same time, retain the local shape characteristics, de-
pends on the parameter v, which controls the size
of the immediate neighborhood of a data point that
ISOMAP uses for calculating point-to-point geodesic
distances. Figures 5 (a), (b), and (c¢) show how the
ISOMAP representation calculated from the original
data changes as we vary . What the ISOMAP algo-
rithm accomplishes can be thought of as the unfold-
ing of the manifold. Since small values of v will cause
geodesic distances to become more sensitive to local
shape variations in the manifold, it is not surprising
that the “unfolded manifolds” returned by ISOMAP
for v = 6 look like what is shown in Figure 5 (a). As
this parameter becomes larger and larger, the sensi-
tivity to small shape variations disappears and what
emerges is the overall global shape as seen in Figure
5 (c). When we apply the KMeans algorithm to the
ISOMAP representation with K = 9 pose classes, the
corresponding clustering results we get are as shown
in Figure 5 for the three different values of v .

We now show that clustering of the multi-subject
data represented by the results in Figure 5 does NOT
yield a usable partitioning of the view sphere. Shown
in Figure 6 is a random sampling of the images in
each of the clusters in Figure 5. What is even more
important with regard to the results shown in Figure

6 are the triple of data entries, with each entry of
the form SI :X where SI is one of {S1,52,53} and
where X is an integer. The three entries {S1, 52,33}
stand for “Subject 1,” “Subject 2,” and “Subject 3,”
respectively, these being the three subjects arranged
left-to-right in Figure 4 (a). The integer X in SI : X
stands for the number of images for the subject SI
in the cluster. Given this notation, out of 9 clusters,
we have 5 clusters that consist exclusively of images
from the same subject. Additionally, in the remaining
4 clusters, we have exactly 2 subjects represented.
There does not exist a single cluster that contains
images from all three subjects. It is therefore evident
that the sort of viewspace we achieve automatically
with such partitioning does not correspond to an even
distribution of the different face poses of the three
subjects. As we have shown in [110], however, this
algorithm does typically give us a good view sphere
partitioning of the images as long as they belong to
a single human subject.

As it turns out what works for the case when multi-
subject images are considered together is a pose based
partitioning of the viewspace. As far as pose-based
criteria are concerned, that is accomplished trivially
since the images generated from the RGBD data are
tagged with the face poses. Figure 7 (a) illustrates
nine partitions that are manually determined in the
pitch and yaw space. Shown in (b) of the figure is a
visualization of all the images in the space spanned
by the three leading eigenvectors extracted from all
of the images. The (c) of the figure shows the parti-
tioning applied to the mean of the images from the
three human subjects, the means being computed for
the same pose parameters.

In the following section, we will discuss locally op-
timum subspace construction from the given clusters
of images. Before launching into the next section, we
must point out that there has been much research
in the past in fitting locally linear subspaces to data
that resides on nonlinear manifolds [111, 112, 5, 72].

3.8. Constructing Subspaces from View-Partioned
Clusters
Whether we cluster all of the training data us-
ing a pose-based approach or separately cluster
the data corresponding to each individual using an



(a) (b) (c)

Figure 4: Visualization of the manifolds corresponding to three subjects as obtained by ISOMAP: (a) Three subjects, (b)
Visualization of person-specific manifold structure in the PCA space, (¢) Mean manifold for the person-specific manifolds in

(b).

(a) (b) (c)

150

(d) (e) (f)

Figure 5: Top row: ISOMAP-based representation of multi-subject face images with (a) v = 6, (b) v = 10, (c) v = 27. Bottom
row: Clustering results in ISOMAP representation with (d) v =6, (e) v = 10, and (f) v = 27.
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Figure 6: Clustered image samples on the result of Figure 5 (d) with K = 9 and v = 6 for three subjects.
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Figure 7: Visualization of the pose-based clustering with K = 9: (a) Manual pose partition, (b) Partitioned subject-specific
manifolds in the PCA space, (¢) A partitioned mean manifold in the PCA space.
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appearance-based method, we need to decide how to
handle the person-to-person variations in the train-
ing data. That is, we need to choose whether the
multi-subject data should be represented through
common view subspaces as at node 2 in Figure 1,
or through a finer person-specific decomposition as
at nodes 5 and 9. In the common-view subspace
we place the training images of all the subjects in
a single pose-partitioned subspace. For the person-
specific subspaces, images of each subject are placed
in either a single pose-partitioned subspace or in a
single appearance-based cluster.

Recent literature in face recognition suggests that
we are likely to achieve higher recognition accura-
cies if we construct person-specific subspaces [113, 5,
114, 115, 116, 117]. The reason has to do with the
fact that, as mentioned above, each individual’s face
data resides on a separate manifold, but the struc-
ture of these manifolds gets lost in a low-dimensional
subspace that integrates over all of the data for all
the training subjects. One can argue that if an at-
tempt was made to retain the manifold structure in
the low-dimensional space constructed using PCA —
as would be the case in person-specific subspaces —
one would get better results no matter what classifi-
cation rule is used for face recognition.

In light of the merits of the person-specific sub-
spaces as stated in the literature, but keeping in
mind that not enough is known about what strate-
gies might work the best for face recognition in the
wild, we keep both options open. That is, this work
evaluates both the Common View Subspace (CVS)
construction and what we refer to as Person Specific
Subspaces (PSS).

3.8.1. Common View Subspace and Person Specific
Subspace Models

The CVS model is only available through the pose-
based partitioning criterion as shown at node 3 of Fig-
ure 1 (as mentioned in Section 3.2 above, partitioning
the CVS model based on subject appearance does not
provide a useful representation). We call this model
Pose-CVS; it is created by first partitioning the view
sphere and then placing all of the training images for
all the subjects in a common subspace for each parti-
tion. As a result, the CVS model consists of multiple
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PCA subspaces, one for each pose partition, and the
principal components of training samples in each sub-
space. Here, each training sample is labeled with the
index of a human subject. Accordingly, for a given
number of views K, the CVS model is represented by

{{5<k>7 Yﬁﬁ} }hH_l W@

{chs,h}thl ) (5)

K

MOdelCVS A
=1

{

based subspace is S*) =< r(k),U(k),A(k) > with
center r®), eigenvector matrix U®) | and eigenval-
ues matrix A®). Additionally, Y;Lk) denotes a set of
projected training samples with respect to the h!"
subject in the k'* cluster. Here, we can also inter-

where Leys n

k ) th
Sk, Y, } , the k" cluster-

pret ch) as the set of points of the h!" subject on
the hyperplane represented by S*).

Again, as shown in Figure 1, the person-specific
subspaces can be constructed for either pose-based
partitioning of the view sphere or appearance-based
partitioning (nodes 6 and 10, respectively). When
the view sphere is partitioned directly in the pose
space, as at node 1, the person-specific subspaces are
constructed by fitting a PCA model to all the training
images for each human subject separately. We call
this approach Pose-PSS. On the other hand, in nodes
7 and 8, we first partition all the training images
on the basis of their human identity and carry out
appearance-based clustering of the images for each
human subject using ISOMAP followed by K-Means
clustering (see [110] for more details). This approach
is called App-PSS. Consequently, both PSS models
can be expressed in the following form:

{{s““) viP} }H (6)
bk ISP
{Lpssn}ry (7)

where K is the number of clusters formed for each
human (based on pose or appearance), and H de-
notes the number of human subjects. The k** cluster-
based subspace for the ht" subject is represented as

S}(L’“) =< rgk), Uzk), A;lk) > with rg“) the center of the

K

MOdelpSS i



Figure 8: Geometric interpretation of the reconstruction error
distance for two subspaces SMand S in RP.

k" cluster, eigenvector matrix U
matrix Ag“). Also, Y,(lk) is the set of points on the
hyperplane represented by S,(lk).

, and eigenvalues

3.3.2. Qwerall Classification Logic for a Test Image

When we use the above subspace models to clas-
sify a query image, we employ a nearest-subspace
(NS) classifier that chooses a subspace in terms of the
smallest reconstruction error. The reconstruction er-
ror distance calculates the orthogonal distance from
a query to the hyperplane obtained by PCA. Figure
8 illustrates the reconstruction error distance from a
query image point q to two hyperplanes S™) and S
in the underlying R” space. The reconstruction error
distance is given by:

a(a,59) = [FO7 (@O,
2
= [a-FOFOT(@ ™), ®)
where U® = [F® F®)] is the matrix whose

columns are eigenvectors of the covariance matrix
obtained from samples in the k" subspace. F(¥)
consists of the d leading eigenvectors and F(*) has
the (n — d) trailing eigenvectors of U*)| which has
rank(U*)) = n.

App-PSS and Pose-PSS return the human identity
using only the NS classifier. On the other hand, Pose-
CVS requires two layered classifiers to decide the hu-
man label. First we need to select a subspace and
then classify the human label with respect to that

subspace. We consider two different classifiers in the
second layer of Pose-CVS, a nearest neighbor (NN)
classifier and an SVM classifier [118, 119].

Figure 9 illustrates the classification logic for each
of the models we consider. Figure 9 (a) shows the
classification logic used for both PSS approaches.
From the N x K subspaces available, the test im-
age is assigned to that subspace for which the recon-
struction error distance is the smallest. This directly
yields the person ID for the test images since each
subspace is person specific. In other words, for the
PSS model Modelpgs, given a query q, recognizing a
face is simply achieved by the nearest subspace clas-
sifier as

h* = argmin d(q, S, (9)

where d(q, S,(Zk)) denotes the reconstruction distance
from a point q to the k" hyperplane of the ht" sub-
ject.

Figures 9 (b) and (c) show how to work with two
layered classifiers for the Pose-CVS model. The first
layer classifier of this model is similar to the PSS
models. For a query image q, we first find the best
subspace to use by minimizing the reconstruction dis-
tance as

j= argmkin d(q, S™), for k=1,--- K. (10)
As for the second layer classifier, Figure 9 (b) shows
the NN classifier and (c) depicts the SVM classifier
where LSVM and RKSVM stand for linear SVM and
RBF kernel SVM, respectively.

For the NN classifier, let the training samples Xv(:j )
in the j** subspace thus ascertained have their local-

subspace representations given by the vectors yz(j ) =

U(j)(xz(]) — @) for ygj) c Y,(f) and i = 1,--- T
where T} is the number of samples in the 4P sub-
space. Subsequently, we search in the local subspace
for that training image which is closest to the query
image q. That is, we find

©) : Nk
I* = arg min HyiJ —UU)(q— r(J))H  fori=1,--- | N;.
(11)

The person label returned by the query image q is the
label h associated with the nearest training sample
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Figure 9: Classification logic for: (a) App-PSS and Pose-PSS, (b) Pose-CVS-NN, (c) Pose-CVS-LSVM and Pose-CVS-RKSVM.

image represented in the local subspace by the vector
v,

For the SVM classifier, the person label is returned
by the SVM classifier trained from the local-subspace
representation of the training samples x\/) in the jth
subspace. During the training procedure, the SVM
classifiers associated with common-view subspaces
are learned from the training samples projected in
each subspace. Here, we consider two popular ker-
nels: a linear kernel K(x;,x;) = x!x; and a non-
linear kernel with radial basis function, K(x;,x;) =
exp (7%) In this paper, we utilize the multi-
class SVM in Chang and Lin’s LibSVM [120], which

is based on the one-against-one approach in which we
have one SVM for each pair of classes [121].

4. COMBINING IDENTITY LABELS
FROM MULTIPLE VIEWPOINTS

This section addresses the question of combining
identity labels of face images recorded from a collec-
tion of viewpoints. Combining the identity labels for
the global approach to face classification, that is when
all of the training data calculated from the RGBD im-
ages resides in a single low-dimensional subspace, is
relatively straightforward. The most commonly used
approach in the literature for this purpose is that of
majority voting. That will be the method we will also
use in this section for the global case.

Appearance samples in various poses for each person
‘ Ii - |2 . IN - ‘

Pose-based or Build view-partitioned
Appearance-based
subspace model

clustering

Training
data

| Modelps |-
or
Model,s

Single image based Classifier

Figure 10: A weighted voting framework for multi-view inputs.

The view-partitioned subspaces open up the pos-
sibility of integrating the labels by giving greater
weight to query images that can be associated with
viewpoints that carry greater discriminatory power
for determining the identity of a face. It should
be intuitively obvious that frontal and near-frontal
viewpoints are more important than images that are
recorded from sharply lateral viewpoints. Hence, we
investigate this weighted voting approach to combine
identity labels in view-partitioned subspaces.

Figure 10 is a visual representation of our overall
framework for training and testing the system for rec-
ognizing a face from a set of query images. The labels
Iy, Iy, ..., Iy in the top box in the figure represent
the different subjects in the population on which the
system is trained. We assume we have access to a sin-



gle frontal RGBD image for the face of each subject.
As explained in Section 3.1, we generate from each
RGBD image a set of 2D images of the face from a
large number of different viewpoints. These images
are then partitioned into K clusters on the basis of
either pose-based partitioning or appearance-based
partitioning. Subsequently, we construct a subspace
for each partition of the training images thus created.

For the testing phase, as shown below the dotted
line in Figure 10, we are given M query images of the
same individual, q1,--- ,qps- As to how these images
are processed depends on whether we use the view-
partitioned subspaces where each subspace represents
the data from all of the subjects (Modelcyg) or
the view-partitioned subspaces in which each subject
in the population gets his/her own view-partitioned
subspace (Modelpss). The specific classifiers for
each model were described in the previous section.

In either case, the output of this step for each query
image is an identity label. In general, we may asso-
ciate a weight w; with the identity label estimated for
the i*" query image and then construct a weighted
aggregation of the identity labels for the final recog-
nition label. The weights reflect the degree of trust
we place in a given query image. When the final iden-
tity label is calculated with simple majority voting,
the weights w; all become 1.

4.1. Weighted Voting by Normalized Reconstruction
Error Distance

In the view-partitioned case, we consider the nor-
malized reconstruction error distance as the weight
to be assigned to a query image. That is, if a query
image q is assigned to a subspace S*) (or S,(Lk) for
the person-specific models), we compute the recon-
struction error when q is projected into the subspace
S(*) and normalize it by the mean value of the error
between q and all the subspaces.! The inverse of this
error then becomes the weight to be assigned to the

INote that, since we need to calculate the reconstruction
error between q and all the subspaces anyway in order to figure
out which subspace is best for q, no additional computations
are involved in the normalization of the reconstruction errors.
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classification label that is given to q by the subspace
Sk,

For the PSS model, the least reconstruction error
distance for the i*” query q; is obtained by

() = min [d(a:, S1)] (12)

where d(q, S, ;(Lk)) denotes the reconstruction error dis-
tance of q to the k** subspace of the h*" person given
by Eq. 8 (see Appendix B in [110] for more details).
Similarly, for the CVS model, the minimum recon-
struction error distance for a query q is obtained by

(a) = min [d(q;, SM)] (13)

Then, the normalized minimum distance is given by

) — £(qi) 14
TS S sy Y

for PSS, and
I P—C ) (15)

% Yo dlai, S®)

for CVS. The weight for the " query q; is deter-
mined in inverse proportion to £(q;) as

1

lai) (16)

w(q;) =
To summarize, given a query image q, let the val-
ues for the reconstruction error between q and the
subspaces S, S@ . be denoted eq,¢e9,.... For
the purpose of class label calculation, we assign q
to the subspace S if ¢; < ¢; for all j # i. Then, to
combine the classifications returned for all the query
images, the class label calculated for q is weighted in
inverse proportion to &; (after normalization).

5. RESULTS

The preceding discussions have raised a number of
important research questions which we now address
with an extensive experimental evaluation. More
specifically, these research questions deal with the is-
sues of 1) whether view partitioning indeed improves



Figure 11: Frontal faces of 10 human subjects in the RVL face
dataset.

the performance of a classifier with respect to global
approaches, 2) what the effect of the number of such
partitions is on the performance, 3) whether such
partitions should be carried out based on the subject
pose or appearance, 4) what the impact of the dimen-
sionality of the subspaces generated during partition-
ing is on the performance of the system, 5) whether
a classification system can indeed benefit from aggre-
gating multiple images from different perspectives,
and if so 6) whether the proposed weighting mech-
anism can further improve the system performance
with respect to simple majority voting aggregation.

In order to quantitatively assess the relative mer-
its of the various classifying strategies, we use three
RGBD datasets. The first is the RVL face dataset
that we created, consisting of 10 human subjects.
Some example images from the RVL dataset are
shown in figures 11 and 13. The second is a pub-
lic dataset consisting of 28 subjects from the Visual
Analysis of People (VAP) lab at Aalborg University
[122]. We will refer to this dataset as the VAP dataset
in the rest of this paper. The third dataset is the
ETH BIWI Kinect Dataset [123], another publicly
available dataset consisting of 20 distinct test sub-
jects. Finally, we also compare our methods to the
state-of-the-art face classification approach proposed
by Parkhi et al. in [124].

5.1. Comparison of the Discriminative Power of
View-partitioned Subspaces

The goal of this section is to measure the class
discriminatory information retained in the different
subspace models by a 10-fold cross validation test.
For the evaluation in this section, we generated 200
multi-view images for each of 10 human subjects from
a single frontal RGBD image for each subject, as de-
scribed in Section 3.1. Figure 11 illustrates frontal
images of the 10 subjects. For 10-fold cross valida-
tion, we randomly shuffle the 200 images for each
human subject. For each fold of the 10-fold test, we
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use 180 of these for training and the remaining 20 for
testing.

During training, we generate the three mod-
els Pose-CVS, Pose-PSS, and App-PSS (see Figure
1). As previously mentioned, the Pose-CVS model
has three variants: Pose-CVS-NN, Pose-CVS-LSVM,
Pose-CVS-RKSVM according to the second layer
classifier. For details about the classification logic
of each model, the reader can refer to Figure 9. Our
performance evaluation in each case is with respect
to the number of clusters K and the dimensionality
of the subspaces d. The baseline method is the RBF
kernel-based SVM classifier with no partitioning be-
cause this type of classifier has been successfully used
in practice.

Figure 12 shows the accuracy of each model with
respect to the dimensionality d and the number of
partitions K. In (a) of the figure, a comparison of all
models is presented with the baseline when there is
no partition. As the reader can see, the PSS model is
not only better than the linear SVM and the global
NN but is also comparable to the Nonlinear SVM.
For the case of the Pose-CVS model, when we use
the NN classifier, it approaches the global NN model
as d increases. When we use the linear SVM and
RBF kernel-based SVM, they converge to the base-
line (although Pose-CVS-LSVM requires a substan-
tially higher dimensionality than shown in the figure
to do so). In terms of the number of view-partitions,
as Figures 12 (b) to (f) show, as K increases, each of
the models converges to its maximum accuracy in a
smaller dimensional subspace. The Pose-CVS-LSVM
model, shown in Figure 12 (c), for example, requires
a dimension of approximately 200 to approach its sat-
urated accuracy with K = 1, but for K = 9, it sur-
passes global linear SVM with as little as d = 20
dimensions.

5.2. Results on the RVL Face Dataset

In this section, we evaluate different mechanisms
to combine information from multiple views in order
to carry out face classification. We first demonstrate
the application of the majority voting rule to the case
when we use a single subspace for representing all
of the training data (i.e., when K = 1). We then
extend the majority voting approach to the case of
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Figure 12: Accuracy vs. subspace dimensionality with respect
to the number of partitions K for: (a) All models at K = 1, (b)
Pose-CVS-NN, (c) Pose-CVS-LSVM, (d) Pose-CVS-RKSVM,
(e) App-PSS, and (f) Pose-PSS. In the Global NN, Linear SVM
and Nonlinear SVM approaches, all the samples are placed in
a common global space without dimensionality reduction and
classification is performed respectively with a Nearest Neigh-
bor, Linear SVM, and Nonlinear SVM with an RBF kernel
classifier.

Figure 13: Examples of all viewpoints of one subject in the
RVL Face dataset.

view-partitioned subspaces (i.e., K > 1) and compare
the results obtained with those of the non-partitioned
approach. Finally, we consider the case of weighted
voting for view-partitioned subspaces in which the
weights depend upon the least reconstruction error
distances.

All of our results in this section are based on the
training data collected from the 10 human subjects
whose 2D images are shown in Figure 11. For each
subject, we record a single frontal RGBD image and
from that image we generate 925 viewpoint variant
images for that subject. The viewpoint variant im-
ages cover an angular range of [—90°,90°] in yaw and
[-60°,60°] in pitch with respect to the frontal posi-
tion of the face in steps of 5°. For the test data, we
use a separate set of face images recorded from differ-
ent viewpoints. To emphasize, the test data is NOT
drawn from the RGBD based 2D images generated for
each subject. We record separately a set of 17 images
for each subject with different orientations of the face
vis-a-vis the camera. Note that these are purely 2D
images. No particular constraint is placed on the rela-
tionship of the head pose to the location/orientation
of the camera — except for ensuring that the face
is sufficiently visible in the camera images. Shown in
Figure 13 are such test images for one of the subjects.

5.2.1. Majority Voting for a Non-partitioned Sub-
space

As stated earlier, we now place all of the training
data in a single non-partitioned subspace. Although
the main focus in this section is to show results with a
single subspace, for the sake of completeness we also
show results with an extension of the idea — we cre-
ate person-specific subspaces but with NO viewpoint
partitioning. While the former corresponds to the
CVS model with K = 1, the latter is equivalent to
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either of the PSS models also with K = 1. The results
shown in this section demonstrate how the classifica-
tion error varies as we change the dimensionality d of
the single subspace and as we change the number M
of query images available.

Figure 14 shows the classification accuracy as a
function of the dimensionality of the subspace. Each
datapoint in Figure 14 as well as in the remainder
of this section corresponds to the average over 100
independent realizations of the experiment. The ac-
curacy results plotted in Figure 14 indicate that the
classification accuracy decreases rapidly when the di-
mensionality of the subspace is made larger than ap-
proximately 20. That indicates that the intrinsic di-
mensionality of the data is no more than 20 and we
have mostly measurement noise beyond that. The
most significant result in Figure 14 is that multi-view
classification, that is, when M is greater than 1, defi-
nitely contributes to increases in overall classification
accuracy.

In order to examine the results plotted in Figure 14
from a different perspective, shown in Figure 15 (a)
are the same results for a fixed value of 20 for the sub-
space dimensionality and as a function of the number
of views M. It is interesting to observe that, when
the test images are drawn from a separate dataset,
the PSS approach performs comparably to the non-
linear SVM for any number of query images. Figure
15 (b) shows the time performance of the classifiers
for the same three cases as in (a).

5.2.2. Magjority Voting for View-Partitioned Sub-
spaces

This section presents the results obtained when the
classification results generated by multiple views are
combined by a simple majority voting approach in
which the contributions from each view are equally
weighted.

Figure 16 shows the multi-view classification ac-
curacy as a function of dimensionality for the Pose-
CVS model. In comparison with the non-partitioned
case, the accuracy does not fall off as rapidly when
we increase the dimensionality beyond 20. Instead,
we see less pronounced peaks at a dimensionality of
approximately 50, which indicates that the dimen-
sionality of the data is dependent on the complexity
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of its subspace representation. The peak is slightly
more pronounced on the linear SVM, indicating that
the non-linear SVM is marginally more robust to the
noise added by the extra dimensions. On average,
when the dimensionality d is approximately 50 and
both methods show their peak performance, the lin-
ear SVM performs about 5% better than the nonlin-
ear SVM, which indicates that for properly modeled
subspaces, the additional complexity of an RBF ker-
nel is not justified. Figure 17 shows results similar to
those in Figure 16 for the PSS model. As with the
CVS model, here again the accuracy does not fall off
as rapidly when we increase the dimensionality be-
yond 20. Instead we see a peak at a dimensionality
of approximately 30, which again indicates the de-
pendence of the dimensionality on the model. The
peak is significantly more noticeable in the App-PSS
model, which indicates that, similar to the Pose-CVS-
LKSVM, it is less robust to noise at higher dimen-
sionalities.

Figure 18 (a) shows how the classification accu-
racy depends on the number M of query images for
a fixed value of the subspace dimensionality d = 20
and view partitions K = 25. For the RVL dataset,
the PSS models show marginally higher performance
than the CVS models with either a nonlinear or a
linear kernel for seven or more views. Shown in (b)
of the same figure are the time performance compar-
isons for the four approaches shown in (a). As can be
seen from the plots in (b), CVS based classification
with pose partitioned subspaces gives the best time
performance.

Figure 19 shows a comparison of the non-
partitioned approaches of section 5.2.1 with the view-
partitioned approaches of this section. As is evi-
dent from this figure, the multi-view classification ap-
proaches with view-partitioned subspaces tend to sig-
nificantly outperform the non-partitioned subspace
methods, particularly when the number of views is
greater than 5. Shown in (b) is a comparison of the
time performance numbers associated with all cases
in (a). This figure tells us that there is a cost asso-
ciated with the superior classification accuracies one
achieves with person-specific view-partitioned multi-
view classification — increased time to arrive at the
results. As we increase the number of views, the
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Figure 19: Comparison of the multi-view classification results
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RVL dataset. The plots in red are for the case when single
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and 25 for the blue plots. (a) Classification accuracies. (b)
Time performance of the classifiers in (a).
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time it takes to arrive at a classification decision by
a person-specific view-partitioned classifier goes up
linearly with M. On the other hand, this time in-
creases sub-linearly for both the common-view view-
partitioned classifier and the non-partitioned classi-
fier.

5.2.8. Weighted Voting for View-Partitioned Sub-
spaces

Figure 20 (a) compares the classification accuracy
obtained with the weighted voting approach of sec-
tion 4.1 to that of simple majority voting. In the fig-
ure, blue lines correspond to weighted voting and red
lines to majority voting. Weighted voting improves
the classification accuracy for all models. For exam-
ple, when M = 7, weighted voting yields an over-
all accuracy about 14% higher than majority voting.
Regarding computational time, Figure 20 (b) shows a
comparison of weighted voting with the majority vot-
ing method. The average time does not change much
by calculating the weights for each query. Therefore,
weighted voting by normalized reconstruction error
distance improves the classification accuracy without
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Figure 20: Comparison of weighted voting (by average nor-
malized reconstruction error distance) with the majority vot-
ing approach for the view partitioned multi-view classification
methods with d = 20 and K = 25 in terms of (a) accuracy and
(b) average test time. The plots in red are for majority voting
and the plots in blue are for weighted voting.

additional computational cost when compared to ma-
jority voting.

5.8. Results on the VAP Dataset

In this section, we evaluate the various classifica-
tion strategies presented above on the publicly avail-
able VAP database [122]. This database has RGB
images at a resolution of 1280 x 960 pixels and depth
data at a resolution of 640 x 480 pixels for 31 sub-
jects. For each subject, there are 17 different face
poses. Note that in this dataset, the authors use the
term ‘face pose’ to refer to both different face orien-
tations vis-a-vis the sensor as well as different facial
expressions. For each subject, 14 poses correspond
to different orientations and 3 correspond to differ-
ent expressions. We maintain this notation in the
rest of our discussion. Each pose has been recorded
3 times resulting in a total of 51 images per person.
More details about the dataset can be found in [122].

Two pre-processing steps are required to use this
dataset for evaluating our classification strategies.
First the RGB images and depth maps are not co-
registered, so simple downsampling of the RGB im-
age is not sufficient to align the two data sources. We
used the Microsoft Kinect SDK to co-register them.
The second step is face detection. The Haar feature
based cascade classifier from OpenCV was used to
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detect faces in the images. We rejected false detec-
tions by using the observation that the position of
the test subjects does not vary much with respect to
the sensor.

Using the procedure described in Section 3.1, we
use one frontal image to generate 925 viewpoint vari-
ant training images of each subject. Regarding the
testing dataset, it is sufficient to ensure that each of
the different views is present once in the test dataset.
That can be accomplished by simply making sure
that the test dataset for each individual subject con-
tains 17 images. Using this process, we were able
to extract all the required (1 training + 17 different
test) face images automatically for 28 people.? The
rest of our discussion is based on this dataset of 28
people.

One observation that we made while using these
frontal images to generate the viewpoint variant im-
ages is that this dataset suffers from stronger shadow
and occlusion effects when compared to our RVL
Face dataset. Visualizing the point clouds in Mesh-
Lab showed that the holes in the point clouds create
holes in the projected images, even after applying the
depth-constrained bilinear interpolation described in
Section 3.1. Some examples to illustrate these arti-
facts are shown in Figure 21. Such effects can impair
the performance of any classifier. More robust 3-D
surface reconstruction algorithms are needed to fill
these holes. This is a part of our ongoing research.
Despite these challenges, our method still shows very
high accuracy, as demonstrated in the following sec-
tions.

5.3.1. Majority Voting

We first show results using majority voting for view
partitioned subspaces. Adhering to the discussion in
Section 5.2.2, we use K = 25 for the number of par-
titions. Figure 22 depicts the classification accuracy
versus dimensionality for different numbers of query
images for the Pose-CVS model. In the figure, as well

2For the remaining three individuals, we were unable to au-
tomatically extract the faces for all views using a face detector.
Instead of manually processing the missing views, we chose not
to include these three individuals in this evaluation.



Figure 21: Examples of holes in the viewpoint variant training
images for the publicly available VAP dataset.
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Figure 22: Multi-view classification accuracy versus subspace
dimensionality for the Pose-CV'S model with K = 25 partitions
on the VAP dataset. (a) Linear SVM (Pose-CVS-LSVM). (b)
Nonlinear SVM (Pose-CVS-RKSVM).
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Figure 23: Multi-view classification accuracy versus the sub-
space dimensionality for the PSS model with K = 25 partitions
on the VAP dataset. (a) Appearance based clustering (App-
PSS). (b) Pose based clustering (Pose-PSS).
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Figure 24: Comparison of multi-view classification approaches
when we use majority voting as a function of the number of
query images M with the dimensionality d = 20 in the VAP
dataset. The plots in red are for the case when single global
subspaces are used and the plots in blue are for the case when
view-partitioning is applied to the training data. The value of
K is 1 for the red plots (since they correspond to the case of
a single global subspace) and 25 for the blue plots. (a) Classi-
fication accuracies. (b) Time performance of the classifiers in

(a).

as in the remainder of this section, each datapoint
corresponds to the average over 17 independent re-
alizations of the experiment. Again we notice that
additional query images increase accuracy and that
peak accuracy is obtained at a dimensionality of 50,
although less noticeably so for the RKSVM model.
The performance difference between linear and non-
linear kernel SVMs is less evident in this dataset, pos-
sibly due to its additional complexity. Figure 23 illus-
trates the performance when we use the PSS models.
Similarly, the dependence on the dimensionality of
the data is less noticeable for the PSS models in this
dataset.

To illustrate the relative performances of the dif-
ferent classifiers while using majority voting, we fix
the dimensionality d as 20 and plot the accuracies
for the non-partitioned and view-partitioned classi-
fiers for different numbers of query images M in part
(a) of Figure 24. Part (b) of the figure shows the
corresponding time performances. As in the previous
results, view partitioning significantly improves per-
formance. Also, we notice that the PSS approaches
tend outperform the CVS approaches even when a
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Figure 25: Comparison of weighted voting (by average nor-
malized reconstruction error distance) with the majority vot-
ing approach for the view partitioned multi-view classification
methods on the VAP dataset with d = 20 and K = 25 in
terms of (a) accuracy and (b) average test time. The plots
in red are for majority voting and the plots in blue are for
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nonlinear kernel is used. This result is expected since
the number of individuals in this dataset is larger
and classification within a common subspace would
be more challenging.

5.3.2. Weighted Voting

We now use the weighted voting approach of sec-
tion 4.1 to combine the classification results from dif-
ferent views. The results are shown in Figure 25. For
the VAP dataset weighted voting also shows a perfor-
mance improvement over majority voting. Also, the
PSS approaches outperform the CVS approaches in
both voting schemes.

5.4. Results on the BIWI Dataset

We also tested our framework on the public BIWI
Kinect Dataset [123]. Although this dataset was orig-
inally created and used for head pose estimation in
real time, it can be used for our purposes as well.
The dataset consists of 24 sequences collected using
the Microsoft Kinect sensor. There are 20 distinct
test subjects consisting of 6 women and 14 men. This
dataset is different from and more challenging than
the VAP and RVL datasets in a number of aspects.
First, in the other datasets, all human subjects looked
at a fixed number of points on a wall sequentially, so
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that the images were recorded by the same Kinect
sensor at roughly the same angles for each person.
On the other hand, for the BIWI dataset, the test
subjects sat in front of the sensor and moved their
heads randomly in different directions in a continuous
fashion while simultaneously changing facial expres-
sions. Moreover, the calibration for the sensor can
be different for different test subjects. The number
of recorded images per test subject can vary between
395 to 946. For each frame, we are provided with the
RGB data as a PNG image and the depth data as
a binary file. Both of these have dimensions of 640
x 480 pixels. More details about this dataset can be
found in [123]. Since our focus is face recognition, we
use data for 20 unique test subjects.

Before testing our framework on this dataset, we
need to first align the depth images and the RGB im-
ages. Each sequence is provided with the calibration
information of the RGB sensor and the depth sen-
sor. Please note that the calibration can be different
for different sequences. This calibration information
can be used to align the depth and RGB images. To
be more precise, for each pixel in the depth image,
we use the calibration information of the depth sen-
sor to backproject the depth image to the 3D point
and then use the calibration information of the RGB
sensor to find the corresponding color values. After
this step, we need to detect faces in the images. The
BIWI dataset also contains mask images that indicate
the location of faces in the image. For convenience,
we use these masks to extract small windows around
faces in our aligned RGB and depth images.

We use one frontal image per sequence for generat-
ing the 925 viewpoint variant training images. Some
of them are shown in Figure 26. All the remaining
images are used as test images. From Figure 26 we
can observe that even with 2.5D interpolation, the
quality of these training images is not as good as
compared to our RVL dataset. Just as in the VAP
dataset, there are holes in the viewpoint variant im-
ages. Moreover, a couple of human subjects were
wearing spectacles and these created holes even in the
frontal image. These artifacts can affect the accuracy
of any classification paradigm. Better calibration,
surface reconstruction and image alignment strate-
gies are possible solutions to address these problems.



As with the VAP dataset, nonetheless, we were able
to achieve high classification accuracies despite these
difficulties, as described in detail below.

Figure 26: Examples of viewpoint variant training images for
the BIWI dataset.

5.4.1. Majority Voting

We first show results with the majority voting
scheme. In Figure 27 we show classification accuracy
versus dimensionality for the Pose-CVS model. We
use K = 25 partitions. Similar to our observations
for the RVL and VAP datasets, accuracy increases
with more query images. Corresponding plots for the
PSS models are shown in Figure 28.

Fixing the dimensionality d to 20, we compare
the accuracies and time performances of the differ-
ent models as a function of the number of query im-
ages in Figure 29. Again, the view-partitioned mod-
els perform better than the single subspace models
and the PSS models outperform the CVS models.
Note that the performance difference between App-
PSS and Pose-PSS is more pronounced in this dataset
than in the VAP dataset. This result is expected since
the subjects moved their heads continuously and pose
parameters were not available, making manual parti-
tioning inevitably substantially less accurate.
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Figure 27: Multi-view classification accuracy versus subspace
dimensionality for the Pose-CV'S model with K = 25 partitions
for the BIWI dataset. (a)Linear SVM (Pose-CVS-LSVM). (b)
Nonlinear SVM (Pose-CVS-RKSVM).
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Figure 28: Multi-view classification accuracy versus subspace
dimensionality for the PSS model with K = 25 partitions for
the BIWI dataset. (a)Appearance based clustering (App-PSS).
(b) Pose based clustering (Pose-PSS).
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tion of the number of query images M with the dimensionality
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fication accuracies. (b) Time performance of the classifiers in
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5.4.2. Weighted Voting

Fixing dimensionality d as 20, we compare the ma-
jority and weighted voting schemes in Figure 30. As
in the previous sections, the weighted voting scheme
clearly outperforms the majority voting scheme. In
this dataset, however, CVS models tend to benefit
more from weighted voting than the view-partitioned
approaches, possibly due to the different calibration
parameters used for different subjects as well as the
large variability in number of image frames for differ-
ent subjects both of which would affect the quality of
the reconstruction error metric.
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Figure 30: Comparison of weighted voting (by average nor-
malized reconstruction error distance) with the majority vot-
ing approach for the view partitioned multi-view classification
methods on the BIWI dataset with d = 20 and K = 25 in
terms of (a) accuracy and (b) average test time. The plots
in red are for majority voting and the plots in blue are for
weighted voting.

5.5. Comparison with Face Recognition based on a
Convolutional Neural Network

We compare our method with the state-of-the-art
facial recognition approach proposed by Parkhi et al.
in [124], which is based on the VGG deep convolu-
tional network. This model was trained on face im-
ages of 2,622 different human subjects. For our ex-
periments, we used the MatConvNet framework and
a NVIDIA Tesla K20 GPU. The training and testing
procedures are briefly described below.

5.5.1. Training and Testing

The viewpoint variant training images from all sub-
jects (925 per subject) are normalized to zero mean
and resized to be of size 224 x 224 x 3 as per the re-
quirements of the VGG net. In order to retrain the
network for our purposes, we first remove the last two
layers of the neural network. These correspond to the
last fully connected layer (denoted as ‘fc8’ in the liter-
ature) and the final softmax layer. Since the original
VGG net was trained on 2,622 classes, its ‘fc8’ layer
produces 2,622 outputs. We replace this layer with a
new ‘fc8’ layer that has as many outputs as the num-
ber of classes (10 for the RVL dataset, 28 for the VAP
dataset, and 20 for the BIWI dataset). The weights
of this new ‘fc8’ layer are randomly initialized. The
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final softmax layer of the original VGG net is also re-
placed with a new softmax layer for the correct num-
ber of classes. We retrain the neural network using
the gradient descent approach for 30 epochs. The
925 images per person are randomly split into train-
ing (90% of the images) and validation sets (10%).
We use the trained neural net to classify the test im-
ages. Similar to the procedure used for our CVS and
PSS approaches, we evaluate the performance of the
deep learning approach by varying both dimension-
ality and number of query images. We use majority
voting to combine labels from multiple views.

5.5.2. Results and Comparison

For the discussion in this section, we will denote
the deep learning classifier as VGG-NET. We fixed
K = 25 and dimension d = 20 for our approaches. In
Figure 31 we compare the classification performance
of VGG-NET with that of our framework. We ob-
serve that for all three datasets our PSS approaches,
when used with the weighted voting strategy, outper-
form VGG-NET when the number of query images is
larger than 7. It is interesting to note that the CVS
approaches also outperform VGG-NET when used in
conjunction with majority voting for the RVL and
the BIWI datasets.

6. CONCLUSION

This paper answers the following question: “To
what extent can face recognition be carried out using
images from multiple arbitrary viewpoints if each hu-
man subject in a population is represented by a single
frontal RGBD image?” No constraints are placed on
the orientation of the camera vis-a-vis that of the
face, except, of course, for the underlying assump-
tion that a face can be seen with sufficient clarity
from each viewpoint.

Towards answering the question stated above, this
paper started out by first investigating the issue of
how to generate multi-view training data from the
individual RGBD images of the faces. Once the train-
ing data was available, we then dealt with how to best
partition the multi-subject multi-view data for the
construction of subspaces. Subsequently, we finally
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confronted our main research problem — multi-view
recognition from images collected from a random se-
lection of viewpoints. We compared global methods
with view-partitioned methods, and, for each case,
we experimented with common-view subspaces and
person-specific subspaces. In the context of using
view-partitioned subspaces, we also investigated the
possibility of carrying out weighted voting in which
the different query images are given different weights
in the final classification depending on which sub-
space that query image was assigned to.

Three important conclusions were drawn. First,
methods based on view-partitioned subspaces showed
superior performance relative to global subspace
methods. Second, person-specific subspaces, when
used in a majority voting framework, are signifi-
cantly more effective than common-view subspaces,
although in most cases common-view subspaces
also provided highly satisfactory results. Finally,
weighted voting based on the normalized reconstruc-
tion error distance outperforms simple majority vot-
ing for multi-view classification. In particular, the
App-PSS approach with weighted voting proved more
flexible and robust than the other methods with a
maximal accuracy of approximately 95% in all three
datasets. The Pose-PSS approach with weighted vot-
ing performed only slightly worse in most cases, ex-
cept for the BIWI dataset, in which the CVS meth-
ods benefited substantially from the weighted vot-
ing scheme. The App-PSS approach outperforms the
state-of-the-art recognition method presented in [124]
by as much as 7% when at least 7 views are available.

With regard to future directions, perhaps the most
important goal would be to investigate the effect of
noise and labeling errors when collecting 2D images
of a face in a crowded environment. This paper made
a simplifying assumption that all the query images on
which the final decision is to be based belong to the
same individual. That is highly unlikely to be the
case in real life scenarios. Other issues that will cer-
tainly be present in a real-world application of our
algorithms and hence need to be investigated in the
future are the effect of query images of variable reso-
lution caused by different distances between the tar-
gets and the cameras and the presence of motion blur
in the images. At the moment it is not clear how a
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Figure 31: Comparison of our proposed approaches with the deep-learning based face recognition system presented in [124] for

the a) RVL dataset, b) VAP dataset, and ¢) BIWI dataset.

large variability in photo resolution in the cameras
or modest amounts of motion blur would affect the
final classification outcome. Finally, another chal-
lenging issue for any facial recognition method are
appearance modifiers such as facial hair and glasses.
Since such modifiers can be seen as different kinds
of partial occlusion, robust dimensionality reduction
approaches such as IGO-PCA [125] which are specifi-
cally designed to handle these kinds of scenarios could
be employed to alleviate this problem. Since our sub-
space construction methods necessarily involve a di-
mensionality reduction step, incorporating such ro-
bust algorithms should be relatively simple.
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