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Abstract

This paper presents a fine segmentation pipeline, designed as a building block of

an Activity of Daily Living analysis framework. The reference application domain is a

protected discharge residence, where elderly patients spend a few days and their health

status and frailty condition is assessed continuously and automatically. The method we

propose addresses a variety of challenges which are typical of the application we con-

sider. It provides accurate segmentation, which will help the estimation of human-object

and human-human interaction. It is tolerant to occlusions and geometric deformations,

and it can detect objects of interest that are not in the foreground of the scene. We re-

port promising quantitative results both on the benchmark DAVIS dataset and on video-

streams acquired in the facility.

1 Introduction

With the rapid population aging occurring worldwide, there is increasing interest in esti-

mating the health status and frailty of the elderly. Frailty is a condition of increased risk

of negative health outcomes, including institutionalization, hospitalization and death, due to

multi-systemic impairments in multiple domains such as physical, cognitive, and social [1].

In order to identify, measure and monitor frailty, geriatricians adopt various Prognostic and

Frailty Indices and use them on hospitalized and community-dwelling older people when

performing regular check-ups. Such indices combine information on the clinical, cognitive,

functional, nutritional, and social skills and are collected through questionnaires as well as

clinical exams and performance tests [2, 3, 4, 5].

No technology currently exists that allows geriatrically-relevant parameters of elderly

patients to be monitored unobtrusively over long periods of time in a long-term care facility

or at the patient home. In order to fill this technological gap, together with physicians from

the Galliera Hospital (Genoa, Italy), we have designed a protected hospital-discharge facil-

ity, equipped as a comfortable two-bedroom apartment in which different sensors including
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video-cameras have been arranged and properly hidden in order to enable an unobtrusive

monitoring of the subjects who spend a few days in the facility after discharge from the hos-

pital. As a core requirement to achieve unobtrusive monitoring, the long-term goal of our

work is to create video analytics tools to robustly and accurately measure relevant mobility

parameters of elderly patients in a relatively uncontrolled environment.

In this paper we address a fundamental building block of this long-term research: the pre-

cise segmentation and tracking of individuals in video-streams acquired by a multi-camera

system. Fine-grained segmentation is crucial for the subsequent steps of the procedure,

namely action and activity recognition needed to address Activity of Daily Living (ADL)

analysis. In order to gather complementary information on the surrounding environment, to

be used to improve the quality of our analysis, we also identify objects belonging to a set

of pre-defined classes of interest. Currently we are considering the following objects: sofa,

chair, and dining table. Our precise segmentation will allow us to obtain robust models of

person-person and object-person interaction to be used within the ADL analysis, to access

functional abilities (that is, the ability of using tools), independence, and social awareness.

The main challenges of our work are the complexity of the scenario and the fact that

the objects of interest may appear in different parts of the image, at different scales, poses

and deformations — because of significant distortions due to the need of adopting wide

angle optics (see Figure 1). To address these challenges, we propose a multi-stream net-

work in which different patches of a video-frame are fed to separate copies of the network.

View-specific distortions are taken into consideration by applying simple ad-hoc geometric

transformations to the image patches. The outputs of the different branches of the network

are combined using a fusion mechanism and refined using superpixel segmentation and a

probabilistic temporal consistency model.

Figure 1: Example of frame containing perspective-distortion. By applying view-specific

transformations (e.g. 45◦ rotation) to the distorted regions, the segmentation can be substan-

tially improved.

We assess the performance of our method on the benchmark DAVIS (Densely Annotated

VIdeo Segmentation) dataset [6, 7] as well as on video streams acquired within our protected

discharge facility. The results show that our approach outperforms state-of-the-art video seg-

mentation methods on selected sequences of the standardized datasets and that it generates

very accurate semantic object segmentation in the real-world videos.
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2 Related work

In order to make inferences about activities of daily living, accurate knowledge about the

spatio-temporal relationships among people and objects is needed. Therefore, the ability

to classify each image pixel, a task known as semantic image segmentation, is an important

element of smart environments. When such segmentation must be carried out in a temporally

consistent manner across video frames, as is the case in such scenarios, this task is known as

semantic video segmentation.

Semantic segmentation of images has been subject of computer vision research for many

years, but the introduction of publicly available datasets such as MSRC-21 [8] and the PAS-

CAL VOC challenge [9] accelerated research in this area. Similarly, semantic video segmen-

tation has also benefited from the introduction of publicly available datasets such as DAVIS

[6, 7] and SegTrack [10]. Most recent works on video segmentation, however, focus on

the simpler task of object segmentation, which consists of accurately segmenting an object

in every frame of a video sequence given a mask representing this object in the first video

frame. In this section we briefly survey some of the most relevant works in semantic image

segmentation as well as in object and semantic video segmentation.

As in most areas of computer vision, earlier semantic image segmentation methods em-

ployed features based on color and texture in conjunction with bag-of-visual words classi-

fiers [11] or conditional random fields [12], but most recent methods are based on features

extracted by convolutional neural networks [13, 14, 15]. One particularly successful recent

strategy is based on the application of fully convolutional networks (FCNs) [16, 17, 18, 19,

20]. In these approaches, rather than terminating the network using fully connected layers

followed by a softmax layer to perform classification, the outputs of the convolutional layers

are upsampled to generate a dense spatial map of pixel labels.

Different upsampling approaches have been employed in order to preserve fine segmen-

tation details, including the application of deconvolution layers [20, 21], encoder-decoder

architectures [16, 18], and the use of dilated (or atrous) convolutions [17]. Although the

‘atrous’ strategy generates accurate results by capturing higher level information using larger

receptive fields rather than downscaling the image, it is computationally expensive.

Significantly less computationally expensive methods have shown similar performances

according to the PASCAL VOC 2012 segmentation challenge 1. RefineNet [19] is one such

method. As most of the best performing recent approaches, it leverages the ability of resid-

ual networks [22] to learn deeper and more complex representations of images. RefineNet

[19] employs a multi-path refinement structure such that long-range residual connections are

formed. Each block has as input two of the feature maps collected from the residual network

at resolutions of 1/4, 1/8, 1/16 and 1/32 of that of the original image. The inputs are com-

bined through a sequence of adaptive convolutions for task-specific fine tuning, upsampling

for multi-resolution fusion and residual pooling to capture background context.

Although most of the methods described above show impressive performances on pub-

licly available benchmark datasets, their main limitation is the fact that they focus on the

segmentation of a few (frequently only one or two) salient and large foreground objects. Al-

though the more recent PASCAL-context dataset [23] introduces more complex scenarios

involving more objects, the performance of most existing approaches on this new dataset is

still far from satisfactory. Addressing this limitation is one of the objectives of the proposed

1The PASCAL VOC dataset is the most widely used dataset for visual object segmentation, which makes its

leader board a good reference to quantitatively compare existing state-of-the-art methods.
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work.

Regarding video segmentation, although some recent approaches which are not based

on CNNs have shown good performance [24], methods that employ CNN features to model

the appearance of the object tend to perform better [25]. Again, approaches based on FCNs

also dominate this field [26, 27, 28]. One-shot video object segmentation (OSVOS) [26],

for example, uses the FCN of [21] to carry out object segmentation in a frame-by-frame

basis without imposing temporal constraints. MSK (MaskTrack+Flow+CRF) [28] performs

object segmentation using the DeepLab network of [17] with the object segmentation masks

of the previous frame provided as a fourth input channel to the network in order to take

into consideration the temporal information. In [27], Jampani et al. propose the Video

Propagation Network (VPN), which is one of the few recent approaches to perform both

semantic and object video segmentation. Their method uses a bilateral filtering network [29]

to carry out temporal propagation and a CNN for spatial segmentation. It has also been

integrated with other FCNs such as DeepLab [17].

In addition to the fact that most of the above methods solve the problem of object seg-

mentation in videos, disregarding semantic information, as with the semantic image seg-

mentation methods, they focus on segmenting a few large and prominent foreground objects

from the background, and hence cannot be directly applied to monitoring the scenarios under

consideration.

3 Our approach

The method we propose for semantic segmentation of video frames uses a core RefineNet

model to compute the likelihood that each pixel belongs to a certain category of interest.

In particular for this preliminary study, we opted for the ResNet-101 based model that pro-

vides state-of-the-art performance on the PASCAL VOC 2012 dataset, which includes all the

objects classes we currently consider for ADL analysis: person, chair, sofa, dining table.

Since our video-sequences for ADL analysis consist of frames acquired with static wide-

angle cameras, we also incorporate in our approach strategies to compensate for distortions

and to detect non-centered objects. Specifically, instead of evaluating only the entire input

frame, we devise a semantic video segmentation architecture based on a spatial multi-stream

arrangement (Fig. 2). In each stream, a region is cropped from the input frame and fed

into a RefineNet module, which outputs 20 pixel-dense feature maps corresponding to the

likelihood that a pixel belongs to a certain PASCAL class. For each class, the computed

scores are then combined by a late fusion layer. In addition, in order to compensate for

perspective distortions from our wide-angle cameras, each portrait is evaluated both with

and without a 45◦ counter-clockwise rotation. After adding the responses obtained from all

the portraits, a pixelwise maximum likelihood evaluation indicates to which class a pixel

most likely corresponds.

Conceptually, this type of architecture allows an adaptive feature extraction arrangement

in which each CNN module composing a stream as well as the late fusion layer can be

fine-tuned through task-specific training. We envisage view-specific training as an important

part of our future work. In our current proof-of-concept implementation no supervised fine-

tuning is performed, such that all the RefineNet modules share the same pre-trained weights,

view-specific segmentation is approximated by the 45◦ rotations, and late fusion is performed

by a simple summation.

Another important requirement in our reference application is the accuracy of the seg-
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Figure 2: Diagram illustrating the sequence of image analysis performed by the proposed

model for semantic segmentation of objects of interest.

mentation so that interactions between different objects and agents can be reliably estimated.

Although the segmentations obtained with RefineNet are finer than the ones obtained with

deconvolutional models such as FCN, a close inspection reveals that the results can be im-

proved especially in terms of boundary adherence. Unsupervised techniques such as super-

pixel segmentation are capable of better exploring local information to estimate boundaries

of objects composing an input image. Therefore, in our approach, we additionally segment

the images using superpixels and each superpixel is then classified according to a majority

voting scheme based on the scores obtained from the RefineNet method. That is, if more

than 50% of the pixels composing a superpixel present a score over a certain threshold for

a given class, the superpixel is considered a positive detection of the object represented by

that class.

In [30], Stutz et al. provide a review of existing superpixel approaches, with a com-

prehensive evaluation that ranked 28 state-of-the-art algorithms according to several metrics

such as average recall, average undersegmentation error, boundary recall and also realtime

capability. The energy optimization based algorithm Extended Topology Preserving Seg-

mentation (ETPS) [31] stands out in their evaluation with high performance in terms of

boundary adherence, recall, stability and runtime. For this reason, we selected this method

to compose our image segmentation model.

For images acquired from our discharge facility, in addition to framewise analysis tem-

poral information can be used based on prior information estimated from the environment.

Since the images are acquired by static cameras, some objects of interest such as pieces of

furniture have lower probabilities of moving between frames. Therefore, for these video
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sequences we also include a simple probabilistic model that, in addition to the likelihood

scores obtained using RefineNet, takes into account temporal information by attributing a

higher probability of detection to pixels detected in the previous frame, while the probability

of transition between labels (e.g. background to foreground or vice-versa) is lower.

4 Assessment on benchmark data

Quantitative evaluation of video segmentation methods requires pixel-accurate and per-frame

ground truth annotation, a notoriously labor-intensive and time-consuming task. Given these

difficulties, our application specific dataset has not been fully labeled by the time of this

publication. For that reason, we quantitatively assess the performance of our method on

video sequences composing the DAVIS 2016 dataset, which reflects many of the proper-

ties of our reference application. It comprises scenarios such as target occlusion, motion-

blur, scenes with depth and appearance/pose changes, all of which are likely to occur in our

application-specific video sequences. For an evaluation that resembles the environment of

our application, where the classes of objects to be detected are known a priori, we selected

only video sequences where targets correspond to objects contained on the PASCAL VOC

2012, disregarding sequences containing unknown objects.

To verify the efficacy of the proposed per-superpixel majority voting scheme, we com-

pare two approaches against the baseline methods: one composed only by RefineNet (which

we refer to as RN) and one combining RefineNet and superpixel analysis (which we refer to

as RS). Although we provide a comparison against multiple video segmentation techniques

proposed for the DAVIS challenge, it is important to note that our goal is not a task-restricted

model that aim to achieve top rank performance on this specific dataset. For this reason, un-

like most reference methods, we do not perform any type of fine-tuning using the training

sequences provided by the DAVIS dataset. The only additional information used as prior

knowledge are the classes composing the foreground/target of each sequence.

Following the official guidelines for the DAVIS Challenge, we compare our method

against the baseline ones in terms of Jaccard index (J ) and contour accuracy (F). The first is

defined as the intersection-over-union (IoU) of an output segmentation and the ground-truth

mask. The contour accuracy is defined as F =
2PcRc
Pc+Rc

, where Pc and Rc stand for contour-

based precision and recall, respectively. Table 1 summarize the results obtained for each

video sequence, with the best results highlighted in bold2.

For the evaluated sequences, both RN and RS approaches provide results that are com-

petitive to the state-of-the-art methods, with average performance slightly superior for both

metrics. This is particularly relevant considering that the baseline methods mostly have the

advantage of being fine-tuned for this dataset. In addition, several of the sequences in the

table were used as training sequences for some methods, and are hence not an indicative of

their performance on data previously unseen by the trackers. For four video sequences, the

performance in terms of segmentation similarity (J ) obtained using RefineNet based meth-

ods are superior to the ones provided by existing approaches. Similarly, for five sequences

RN and RS achieve better contour accuracy (F) than the baseline methods.

In addition, the performance of our method is consistent over time. Results obtained

in terms of J decay (DJ ) and F decay (DF ) evidence this characteristic as indicated in

Figure 3 (Left), which shows that our method outperforms all the other approaches in these

2Note that results for OSVOS are not included in the table because the authors of [29] do not report their results

on the official training set, which contains most of our selected sequences.
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Table 1: Jaccard index (J) / Contour accuracy (F) Per-Sequence
Sequence RS RN MSK [28] VPN [27] OFL [25] BVS [24] NLC [32]

bmx-bumps 45.8 / 60.5 42.6 / 63.0 57.1 / 67.8 41.8 / 59.2 47.5 / 52.9 43.4 / 49.3 63.5 / 73.4

bmx-trees 44.9 / 64.6 44.5 / 64.2 57.5 / 73.6 33.5 / 46.2 14.9 / 16.4 38.2 / 65.2 21.2 / 33.0

breakdance

-flare
86.4 / 91.2 83.5 / 92.2 77.6 / 78.4 82.7 / 90.8 75.6 / 78.3 72.7 / 77.5 80.4 / 80.8

hike 90.6 / 94.2 85.5 / 94.8 93.1 / 96.0 88.0 / 95.4 93.4 / 96.6 75.5 / 76.4 91.8 / 94.3

hockey 83.2 / 81.4 80.8 / 83.1 83.4 / 79.1 78.5 / 80.3 84.9 / 88.9 82.9 / 85.0 81.0 / 80.8

horsejump

-high
82.1 / 84.4 80.2 / 86.0 81.7 / 85.1 81.8 / 86.3 86.3 / 90.4 80.1 / 80.4 83.4 / 88.1

horsejump

-low
82.6 / 86.8 82.7 / 89.6 80.6 / 81.2 74.4 / 71.3 82.2 / 85.9 60.1 / 56.5 65.1 / 65.9

kite-surf 64.7 / 44.8 60.7 / 42.5 60.0 / 43.8 62.3 / 53.5 70.3 / 49.7 42.5 / 64.5 45.3 / 44.8

lucia 89.9 / 92.4 86.8 / 92.4 91.1 / 89.5 86.4 / 90.2 89.7 / 89.4 90.1 / 90.0 87.6 / 87.2

motocross

-bumps
89.2 / 81.9 88.0 / 82.8 59.9 / 55.4 87.2 / 82.4 47.4 / 48.0 40.1 / 49.0 61.4 / 56.0

motorbike 79.1 / 75.6 79.9 / 75.3 56.6 / 59.7 80.8 / 81.4 47.6 / 50.4 56.3 / 69.6 71.4 / 57.1

paragliding

-launch
61.4 / 20.6 59.2 / 19.4 62.1 / 22.9 61.4 / 23.1 63.7 / 25.3 64.0 / 32.4 62.8 / 24.3

parkour 89.3 / 90.3 85.9 / 92.1 88.2 / 87.4 87.3 / 91.7 85.9 / 87.0 75.6 / 67.8 90.1 / 91.6

rollerblade 84.5 / 86.1 81.7 / 89.5 78.7 / 85.0 81.4 / 87.9 89.2 / 94.0 58.8 / 64.5 81.4 / 86.8

scooter

-gray
73.5 / 66.8 72.6 / 68.1 82.9 / 65.9 76.8 / 68.7 25.8 / 20.8 50.8 / 60.2 58.6 / 46.7

swing 77.0 / 66.2 75.1 / 66.3 81.9 / 74.5 82.5 / 78.7 56.2 / 59.2 78.4 / 74.6 85.1 / 77.8

tennis 85.1 / 90.5 82.5 / 92.1 86.1 / 91.1 79.0 / 89.4 81.7 / 87.2 73.7 / 84.5 87.1 / 92.7

MEAN 77.0 / 75.2 74.8 / 76.1 75.2 / 72.7 74.4 / 75.1 67.2 / 65.9 63.7 / 67.5 71.6 / 69.5

metrics. Moreover, a closer inspection based on pixelwise precision and recall (PR) metrics

reveals that for most cases the detections provided by the proposed method are very precise.

Figure 3 (Right) shows the PR curves summarizing the average performance of both RN

and RS methods for the selected sequences. As the figure indicates, both approaches can

simultaneously obtain precision and recall of approximately 85%, with the RS approach

providing slightly higher precision at higher recall rates.
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Figure 3: Performances on video sequences selected from the DAVIS 2016 dataset. Left:

Mean J decay (DJ ) and F decay (DF ) for each method. Right: Average precision recall

curve of RefineNet based methods.

Figure 4 illustrates the segmentation accuracy for six scenarios that particularly resemble

some challenges likely to occur in image analysis for ADL, e.g. poses variation, occlusion,
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and scenes with depth and appearance changes. In these images, pixels correctly detected are

marked in green. The red color indicates false positives, while false negatives are shown in

blue. These results are a good evidence of the model robustness against such challenges. As

illustrated by the frames extracted from the sequences hockey and paragliding-launch, false

negatives mostly correspond to regions corresponding to objects unknown to the RefineNet

model (i.e. not present in the PASCAL dataset).

True Positives False Positives False Negatives

Figure 4: Examples of segmentation accuracy for scenarios including unusual poses, occlu-

sion, depth and appearance changes.

5 Application to ADL

While the evaluation performed on benchmark data gives indications of the method perfor-

mance in terms of the detection of objects of interest, the determination of its suitability

for ADL analysis necessitates a task-oriented assessment using videos acquired within the

protected discharge facility.

To quantitatively estimate the detection accuracy, we manually counted the number of

correctly identified objects and false positives within two sequences of 50 frames, each ac-

quired with one of the two cameras (named view1 and view2) installed in our discharge

facility. An object is considered correctly detected when at least 70% of its total area has

been properly segmented, while a false positive corresponds to incorrect isolated detections

of any size. To reduce labeling bias and in order to keep an approximately constant tolerance,

each pair of detections was evaluated by the same human subject.

Two different approaches were evaluated. The first one (which we refer to as RN) consists

of directly evaluating each frame using solely the RefineNet model, while the second (MRST)

corresponds to the method we propose which is summarized in Figure 2 and employs multi-

ple streams, superpixel enhancement, and the aforementioned temporal probabilistic model

in conjunction with the pre-trained CNN.

Figure 5 shows qualitative results demonstrating that the proposed approach can detect

and segment most of the relevant objects present within a scene, such as person, chair, sofa,

TV and table. MRST in particular shows very promising results. Tables 2 and 3 summarize

the quantitative results obtained for the video sequences acquired with cameras view1 and
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view2. Both tables present the total number of correct detections for each object category

under consideration as well as the average number of correct detections per frame. The table

also shows the total and average number of false positives. Both tables show a significant

increase in the total number of correct detections for all object classes in both views. Al-

though MRST generated 3 additional false positives in view1, all three occurred in the first

three frames evaluated, before the temporal model stabilized.

Table 2: Analysis of 50 frames - View 1

RN MRST

Class Total Avg. Total Avg.

People 136 2.72 141 2.82

Chairs 126 2.52 188 3.76

Tables 65 1.30 74 1.48

TV 19 0.38 38 0.76

FP 4 0.08 7 0.14

Table 3: Analysis of 50 frames - View 2

RN MRST

Class Total Avg. Total Avg.

People 31 0.62 56 1.12

Chairs 48 0.96 50 1.00

Sofas 0 0.00 48 0.96

FP 9 0.18 0 0.00

Given the position of the second camera in the discharge facility (upper corner of the

room), images acquired with this camera are particularly relevant since perspective distor-

tions are present in every frame. The higher number of people and sofas detected in these

frames using MRST demonstrate the effectiveness of the multiple streams and image rota-

tions to obtain segmentations somewhat robust against the existing distortions.

Person Chair Dining table Sofa TV/monitor

Figure 5: Examples of segmentation obtained for images acquired with cameras view1 (top

row) and view2 (bottom row). Left column: results obtaining using solely RefineNet; Right

column: results obtained combining multiple streams, RefineNet, superpixel enhancement

and temporal probabilistic model.
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6 Discussion and future work

We proposed a fine semantic video segmentation method for ADL analysis in multi-cameras

assisted living applications. Our method employs the RefineNet semantic image segmenta-

tion approach in a multi-stream framework that allows the accurate segmentation of multiple

objects in videos obtained using wide-angle cameras. Our approach further improves the

segmentation accuracy by incorporating a superpixel majority voting post-processing mech-

anism as well as a temporal probabilistic model. Preliminary results show that our approach

outperforms existing video segmentation methods in publicly available video sequences and

performs accurate segmentation in a real-world assisted living facility.

In the future, we plan on extending our framework to fine-tune the different streams

to perform view-specific segmentation so that ad-hoc transformations (e.g., 45◦ rotations)

are not necessary. We also plan on incorporating more sophisticated temporal models that

predict the expected position of objects in order to improve temporal consistency. More

broadly, we plan on using the results of our semantic segmentation algorithms in activity

recognition and tracking methods to generate automatic ADL analysis reports that can be

used by geriatricians to evaluate the overall health status of their patients.
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