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ABSTRACT

This article proposes a novel framework for visual tracking
based on the integration of a deep convolutional neural net-
work (CNN) and a particle filter. In the proposed framework,
the position of the target at each frame is predicted by a par-
ticle filter according to a motion model. Particles around the
predicted position are then used as input to the HCFT CNN-
based tracker which adjusts their positions to the most likely
target positions. The weights of the particles are then deter-
mined using the correlation map of the CNN tracker. Finally,
the particles and their weights are used to calculate the posi-
tion of the target in the current frame. We evaluated the per-
formance of the proposed framework using the Visual Tracker
Benchmark v1.0. Our results show that this method improves
the performance of HCFT in challenging attributes such as de-
formation, illumination, out-of-plane and in-plane rotations,
as well as overall performance.

Index Terms— Deep Convolutional Neural Network,
Particle Filter, Visual Tracking, Visual Tracker Benchmark

1. INTRODUCTION

Visual target tracking is a challenging computer vision prob-
lem, particularly in situations such as occlusions, target defor-
mations, and in-plane or out-of-plane rotations. Although re-
cent visual tracking approaches based on particle filters such
as the Firefly algorithm [1], or those based on correlation fil-
ters such as [2, 3] showed acceptable results, they are not as
effective as trackers based on convolutional neural networks
(CNN). Recently, a powerful visual tracker named Hierarchi-
cal Convolutional Feature Tracker (HCFT) has been proposed
by Ma et al. in [4]. The tracker employs a deep convolutional
neural network and showed substantial performance improve-
ment in comparison with other visual trackers such as MEEM
[5], KCF [6], Struck [7] and TLD [8]. The deep convolu-
tional neural network employed in HCFT is considered as a
pyramid in which the earlier convolutional layers are used to
extract spatial information and the later layers are employed
to obtain semantic information [4]. A correlation filter is used
on the output of each of the convolutional layers. Then, in a
coarse-to-fine manner and by moving back from the semantic
information to the spatial information, the exact position of

the target is determined [4].
In this article, a particle filter is integrated with HCFT

to improve its performance in critical situations such as de-
formation, illumination, out-of-plane and in-plane rotations.
The position of the target at the current frame is utilized in
conjunction with a target motion model to predict its position
in the next frame. Afterwards, particles are generated around
the predicted position and used as inputs to HCFT, which then
refines their predicted locations. Also, our framework utilizes
the output of the convolutional neural network and correlation
filter, which we henceforth call a feature map, to determine
the weights of the particles. Finally, the position of the target
for the current frame is calculated based on the particles and
their weights.

2. RELATED WORK

After being successfully utilized in object detection tasks [9],
convolutional neural networks (CNN) have more recently
been employed in visual tracking. Several different CNN
structures have been proposed so far. Li et al. presented a
CNN tracker with only two convolutional layers, which uses
three different image cues for each image patch as inputs to
the CNN [10]. The output of the CNN is connected to two
fully connected layers which are responsible for estimating
the position of the target [10]. Li et al. also proposed a new
tracker, which has the same convolutional layers as in [10]
but uses a different training model for the two fully connected
layers [11]. In the new tracker, by considering different lifes-
pans on every data sequence, different sub-sequences are
made. These sub-sequences with different cues are then used
for training different tasks [11]. Another interesting CNN
tracker is MDNet [12], which shares three convolutional
layers for all domains and assigns a specific layer to each
domain.

Unlike CNNs, particle filters have been widely employed
in visual tracking for several years. Li et al., for example,
proposed a visual tracker based on a topdown visual attention
computational model and the particle filter [13]. The pro-
posed topdown visual attention detects target-related salient
regions. Then, the salient regions are sent to the particle filter
to determine the position of the target [13]. Gao et al. pre-
sented an algorithm named Firefly in which the number of



Fig. 1. The outputs of the different layers of the CNN and the
determination of the exact position of the target by applying a
coarse-to-fine method. The red boxes are the estimated loca-
tion of the target at each layer. W1, W2 and W3 refer to the
correlation filters. Blue and red circles show the previous and
current positions, respectively.

meaningful particles was dynamically increased to improve
tracking performance [1]. Another visual tracker was pro-
posed in [14] based on a novel iterative particle filter (IPF)
which iteratively samples the particles with the search scope
contracted. Additionally, Kim et al. employed the particle fil-
ter in conjunction with a target appearance model based on a
Gaussian mixture [15].

Recently, visual tracking methods combining particle fil-
ters with deep neural networks such as stacked de-noising au-
toencoders [16] or a two-layer CNN [17] have been proposed.
However, unlike the framework proposed in this paper, these
approaches do not take into consideration the possibility of
utilizing correlation filters to determine the likelihood of the
observations.

3. STRUCTURE OF HCFT

The CNN used in HCFT was originally proposed by Ma et
al. in [18] for object detection. It includes five convolutional
layers and five pooling layers. The outputs of the different
layers of HCFT for a specific frame of the motor-rolling data
sequence are illustrated in Fig. 1. The deconvolutional neural
network proposed by Zeiler et al. in [19] clarified that layers
1 and 2 respond to edges, layer 3 recognizes similar textures,
layer 4 illustrates significant variation, and layer 5 shows en-
tire objects with significant pose variation. Thus, semantic
information of the target is extracted from the later layers of
the CNN and spatial details are obtained from the early layers.
HCFT uses the correlation filter over the outputs of each con-
volutional layer. Then, by applying a coarse-to-fine method
it moves back from the fifth layer to the third layer to deter-
mine the exact position of the target. Fig. 1 also shows the
coarse-to-fine method applied in [4].

Algorithm 1 Proposed Visual Tracking Algorithm
Input: Current frame, previous position and velocity of the

target x(t− 1)
Output: Current position and velocity of the target x(t)

1: repeat
2: Predict x̂(t) from Ax(t− 1) + q(t)
3: Generate initial particles x̂i around x̂(t) by additive

Gaussian noise
4: Give x̂i to the CNN and compute the new xi
5: Extract the weight of each particle wi(t) from the

correlation map
6: Compute the normalized weightsWi(t)
7: Compute the effective sample size N̂ using Eq. (5)
8: if N̂ <= Nthr then
9: Perform resampling.

10: end if
11: Estimate x(t) based on the particles and their weights
12: until end of the video sequence

4. PARTICLE FILTER DESIGN

The Particle filter (PF) is a sequential Monte Carlo method
that employs a set of random weighted samples called parti-
cles to represent the posterior distribution of the target state
[20]. The filtering posterior distribution of the target state at
time t is then given by

P̂ r(x(t) | Yt) ≈
M∑
i=1

Wi(t)δ(x(t)− xi(t)) (1)

where xi represent the samples, M the number of particles
and Wi the normalized particle weights. x(t) is the target
state, which is given by

x(t) =
[
u(t), v(t), u̇(t), v̇(t)

]T
(2)

where u(t) and v(t) are the locations of the target on the hori-
zontal and vertical image axes and u̇(t) and v̇(t) are the corre-
sponding velocities. In the proposed framework, the previous
target state x(t− 1) is given to the motion model to calculate
the predicted position x̂(t). The motion model is given by

x̂(t) = Ax(t− 1) + q(t) (3)

where q(t) is the process noise and A is the process matrix
defined by

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 (4)

The predicted target position is then disturbed by additive
Gaussian noise to generate an initial set of particles x̂i. These
particles are then used as inputs to the HCFT tracker to gen-
erate a new set of particles xi. The weights, wi, of the parti-
cles xi are given by the sum of all the elements of the feature



Fig. 2. Comparison between our tracker and HCFT on six different data sequences. HCFT’s performance is shown in green
and ours in red. The three test sequences on the left show OPE results and the three sequences on the right show SRE results.

map corresponding to that particular image patch. The intu-
ition behind this choice is that feature maps that correspond
to the target tend to show substantially higher correlation val-
ues than background patches [21]. We then compute the nor-
malized weights Wi(t) which are used to update the target
posterior [20]. At every iteration of the filter, we compute the
effective sample size N̂ and compare it with a fixed threshold
Nthr to determine if resampling should be carried out. The
effective sample size is given by [20]

N̂ =
1∑M

i=1 w
2
i (t)

(5)

If N̂ <=Nthr, then resampling is performed. Finally, the po-
sition of the target for the current frame is estimated according
to [20]

x(t) ≈
M∑
i=1

Wi(t)xi(t) (6)

Algorithm 1 summarizes the proposed visual tracker.

5. RESULTS AND DISCUSSION

We evaluate our algorithm using the well known Visual
Tracker Benchmark v1.0 [22], which contains 50 data se-
quences that are annotated with 9 attributes representing
challenging aspects of tracking, such as occlusions, defor-
mations, and illumination variations. It benchmarks trackers
against a one-pass evaluation (OPE), a spatial robustness eval-
uation (SRE), and a temporal robustness evaluation (TRE).
In the OPE metric, the tracker is initialized with the ground
truth location at the first frame of the image sequence while
in the SRE metric, the initialization is subject to some dis-
turbance. TRE focuses on short-term tracking, and since the
main benefit of employing our proposed method is to extend

the long-term tracking ability of the HCFT algorithm, we
only present results for the OPE and SRE metrics. The im-
provements with respect to the TRE metric are negligible, as
expected. For additional details on the benchmark procedure,
we refer the reader to [22].

Fig. 2 shows a qualitative illustration of the performance
of our tracker in comparison with HCFT on some sequences
in which HCFT fails. The three sequences on the left show
OPE results and the three sequences on the right illustrate
SRE results. As the sequences indicate, the baseline tracker
gets easily confused in situations such as deformation, occlu-
sion, blurring, and out-of-plane rotations. The particle filter is
able to sample several image patches and it is hence capable
of overcoming these difficulties.

Fig. 3 shows a quantitative evaluation of the performance
of the proposed approach in comparison with HCFT for the
attributes in which our approach shows the most significant
improvement. In the figure, precision plots correspond to
the average Euclidean distance between the tracked locations
and the ground truth while success plots correspond to the
amount of overlap between the target bounding box and the
corresponding ground truth [22]. As the figure shows, the
proposed framework improves the performance of HCFT on
several attributes without degrading its performance on other
attributes not shown in the figure. In attributes such as tem-
porary deformation, illumination, in-plane and out-of-plane
rotations in which the correlation filter loses track of the tar-
get, the motion model allows the successful prediction of the
position of the target and the particles are then able to recover
using the weights generated by the CNN. Under challeng-
ing conditions that include deformation, illumination varia-
tion, out-of-plane and in-plane rotations, our method shows
improvements of approximately 7.5%, 4.5%, 4% and 3.5%,
respectively. The overall OPE success rate improvement is
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Fig. 3. Performance comparison of our tracker versus HCFT on OPE and SRE metrics. The red plots correspond to our tracker
(PF HCFT) and the green plots to the baseline (HCFT).

approximately 3.5%.

6. CONCLUSION

This article proposes a novel framework for visual tracking
based on the integration of a deep convolutional neural net-
work and a particle filter. In the proposed framework, a mo-
tion model predicts the position of the target at each frame
and the HCFT CNN-based tracker is used for refining the par-
ticle positions and generating the corresponding weights. We
evaluated the performance of the proposed framework using
the Visual Tracker Benchmark v1.0 and the results show that
our method improves the performance of HCFT in challeng-
ing conditions such as deformation, illumination, in-plane and
out-of-plane rotations. The motion model in conjunction with
the particle filter’s ability to sample several image patches al-

low it to overcome temporary target losses caused by dramatic
temporary appearance changes or occlusions.

Sequential Monte Carlo methods have been used to incor-
porate temporal information and hence develop robust object
tracking algorithms that build on features that range from sim-
ple color histograms to support vector machines [23, 24]. It is
only natural to integrate such temporal robustness with recent
state-of-the-art feature extraction techniques such as correla-
tion filter based deep convolutional neural networks. Con-
sidering the progress observed over the past several decades
in the area of recursive Bayesian estimation and the recent
significant machine learning breakthroughs made possible by
deep learning techniques, we believe this work is just the first
step in that direction.
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