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Abstract

Intelligent data fusion is an active area of research. Most recent works in data fusion
for object tracking employ machine learning techniques that lack flexibility due to their
inability to adapt to changing conditions in the presence of limited amounts of train-
ing data. Our work explores a hierarchical Bayesian fusion approach, which aggregates
information from multiple tracking algorithms into a more robust estimate and hence
outperforms its constituent trackers. This adaptive and general data fusion scheme takes
advantage of each tracker’s local statistics and combines them using a global softened
majority voting. The widespread availability of high-performance multicore processors
has allowed parallel threads to run multiple trackers asynchronously, which means that
the algorithm can be executed in real time as it is only limited by the slowest tracker
in the ensemble. The proposed approach is corroborated and evaluated on the OTB-50
dataset.

1 Introduction

Given an initial frame and initial bounding box that delimits an object of interest in that
frame, the purpose of a single-target tracking algorithm is to follow this subject through
subsequent frames without being told the new bounding box that encompasses the object.
Due to the very open-ended and multifaceted nature of this problem, a myriad of different
trackers has been developed.

Trackers such as TLD [10], for example, use a nearest neighbor based approach to ad-
dress the issue of tracking an object between frames. State-of-the-art trackers such as GO-
TURN [9], use deep convolutional neural networks to track objects in a search space. Due
to their inherent design characteristics, the performance of these trackers differ with respect
to issues such as occlusion, illumination, motion, deformation, blur and rotation. As such,
different trackers have been found to perform better depending on the scenario. With this in
mind, while some trackers show overall better performance in standardized datasets, there
are instances in which these trackers are outperformed by less sophisticated methods due to
the fact that they do not handle a particular situation well. As it stands now, the tracking
problem is still a largely open research topic.

There are many benchmarks and datasets that allow the object-tracking research com-
munity to evaluate the performance of their algorithms. The Object Tracking Benchmark
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(OTB) [22], for example, allows for quantitative measurement and a comparison of the per-
formance of trackers.

Our work applies the method of hierarchical Bayesian data fusion developed by Echev-
erri et al. [4] for use in an autonomous target following with drones to object tracking. This
approach has the benefit of increasing tracking robustness for situations where improvement
is critical. Autonomous vehicles, for example, are high-stakes machines where human safety
is a concern, and it is hence paramount that performance is optimal. Because of the flexi-
ble and adaptive nature of the framework, it can continue to be used with any tracker, and
any number of trackers greater than three. Our contribution evaluates this approach on the
OTB-50 dataset and compares the performance relative to the trackers that constitute this
approach. Because the ultimate focus is robotics,the four fast state-of-the-art trackers we
used in our evaluation are GOTURN [9], TLD [10], CMT [18] and Struck [8].

2 Previous Work

Object tracking is a key element of computer vision and a heavily researched topic. This
problem has multiple applications in autonomous following drones [6], autonomous vehi-
cles, augmented reality [3] and robotics [22][7]. Wu et al. [22] and Kristan et al. [11] discuss
at least 50 unique trackers that have been developed. A common approach is to learn some-
thing about the object’s appearance, features, and motion. The tracker searches the entire im-
age for another area that most closely fits the learned representation. Sift-points [18], nearest
neighbor classifiers [10], support vector machines (SVM) [8] and neural networks [9] are
just a few of the various methods that have been applied to tackle this problem.

Originally proposed by Kalal ef al. TLD [10] uses a framework that learns and detects
object while it is not tracking. To track, TLD uses a nearest neighbor approach with multiple
“experts” to both track and detect objects. This results in a good performance overall, but
the tracker is weak in situations such as out-of-plane rotations and tends to perform poorly
on situations with extended occlusion.

To specifically target the issue of deformation, CMT [18] was introduced. To track,
CMT uses the initial bounding box to generate keypoints. The tracker attempts to follow
these points frame by frame using optical flow and descriptors. Each of these points then
“votes” on where they believe the center of the object to be. This tracker performs well with
partial occlusion as well as scale but is not very robust.

Struck [8] is a recent contribution that uses an adaptive SVM approach. It is accurate and
is fairly robust to challenging conditions, but it does not deal with scale variation. Hence,
the target bounding box is kept at a constant size, which limits the tracker to sequences in
which the distance between the target and the camera remains relatively constant.

GOTURN [9] is a fast neural network based approach proposed by Held et al. It is based
on the feed-forward output of a pretrained convolutional neural network. Due to the nature
of neural networks, this tracker is particularly powerful on sequences similar to those in
which it had been trained. As with all neural network based approaches, it can suffer from
overfitting or encounter novel scenarios unfamiliar to the network and generate incoherent
results.

Individually these are all relatively recent and state-of-the-art real-time trackers that per-
form well but each has specific weaknesses in certain scenarios. With this in mind, it is
necessary to then intelligently fuse the information from these trackers to mitigate one an-
other’s weakness.
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2.1 Data Fusion

Initially, the idea of adaptive fusion began in the 1960s with the introduction of the Kalman
filter (KF). Additionally, other approaches based on particle filters (PF) [5] and fuzzy logic [3]
have also recently risen to prominence. Each of these methods assumes some sort of prior
knowledge about the trajectory of what you are tracking. For single-object-tracking, this is
generally a valid assumption given the relatively locally linear nature of the motion of most
objects when observed at reasonable frame rates. Our work is most similar to the work done
by Bailer [1] and Biresaw [2], which use a hierarchical state fusion interpretation. However,
we use a different data fusion approach than Biresaw, and our calculations are done with a
Bayesian framework in contrast to the work done by Bailer. Additionally, similar Bayesian
frameworks were proposed by Yang et al. [23] to perform multimodal tracking for health-
care applications with the use of different weighting scheme but a similar Bayesian fusion
approach. One of the most common modern approaches to data fusion is the use of ma-
chine learning. These methods are powerful but are challenging to realistically implement
due to their reliance on large amounts of training data. The approach presented in this paper
forgoes these issues by using an adaptive Bayesian model that “adapts” its behavior based
on the performance of the trackers. A hierarchical Bayesian data fusion approach requires
only that the user provides weights to the trackers as a tuning parameter and a motion model
which can be assumed.

2.2 Visual Tracking Benchmarks

To measure that the output of our data fusion method is working better than the trackers that
comprise it, it is necessary to test the results on a benchmark. The OTB-50 benchmark is
one of the most common tools used to evaluate this various performance scores. Originally
introduced in [22], the OTB-50 benchmark has 50 specific data sequences that it uses to
provide different measurements of performance on various attributes. The most general
of these measurements is the success, which measures how well the tracker can track the
object throughout all of the image sequences. The OTB benchmark makes it possible to
quantitatively evaluate the results generated by the tracker. Other publicly available visual
tracking benchmark datasets include VOT [11] and ALOV [20]. We chose OTB-50 chosen
due to its simple integration.

3 Hierarchical Bayesian Data Fusion for Target Tracking

The method proposed in this work will be henceforth referred to as hierarchical adaptive
Bayesian data fusion (HAB-DF). The approach proposed is a variation of the mixture of ex-
perts framework [24]. The main difference being that the gate is substituted with a Bayesian
approach. Each separate tracker s acts as an “expert” asynchronously when it is run through
a Kalman filter. The motion model and observation models are given by

x(t) =Ax(t—1)+w(z) (1)
y(t) = Cx(t) +v(1), 2)
where x is the state vector and y is the observation vector. Equation 1 represents the system

dynamics with A representing the transition matrix, B being the control matrix and w mod-
eling process noise. In Equation 2, C is the observation matrix, and v is the measurement
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noise. Both of the noises are assumed to be white and Gaussian with variances R,,,, and
R,,. HAB-DF uses two sources of information to penalize detectors and to vote on a global
output. The first mechanism through which the framework assigns weights to each of the
detectors is based on the Mahalanobis distances (MD) [15] of the observations

M) = /(- )7z (- ), 3

As shown by Pinho et al. [19] the MD can be approximated by

N )2
Oy (M) @

where y; and L; are the elements of y and pt and ¥;; are the diagonal elements of the innovation
covariance matrix X.

Rather than using the MD values directly as weights in our framework, in order to soften
transitions as the performance of the individual trackers fluctuates, a sigmoid function is
employed

1

BE T EOrIE )

WM
where £ is a value chosen based on the > number of degrees of freedom of the system and
the desired confidence level. This step takes advantage of the Bayesian framework but rather
than using those statistics to correct the tracker as done in [12, 13], here they are applied as
weights in a voting scheme.

The other mechanism involved in the assignment of weights to the outputs of the individ-
ual trackers is the majority voting scheme based on the pairwise Euclidean distances between
the various trackers. Let x; and x; represent the state vectors corresponding to two different
trackers. Let the Euclidean distance between x; and x; be

dij = ||xi —x;l|. (6)

Then min, represents the smallest distance between tracker i and all of the other trackers in
the framework.
ming = min (d; ;). @)

Again a softening mechanism is applied to avoid abrupt changes in the tracker operation. In
this case, the method chosen was a hyperbolic tangent function

wg = @+ ©(1 + tanh(ming — 1)), 8)

where @y is the minimum value and A represents the minimum required for the penalization
to take place.

The filtered outputs of all the trackers, bounding boxes x;, are provided as inputs to
another KF. This acts as the fusion center. The fusion center adapts itself to changes in the
performance of individual trackers after each new measurement is collected by updating its
measurement noise covariance according to

Roo(Wa,wm) =Twg + Awy, )
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where I' = diag(v, P, , W), A = diag(d1,0,- - ,0,), and diag(.) represents a diagonal
matrix whose elements are the function parameters. ¥; and 6; are set to 1 if there is no a priori
knowledge of the system, but they can be adjusted individually if there is prior information
about expected tracker performance. That is, the majority voting weight w,; and the MD
weight wy, are used by the global tracker to update Rss, which is then used in the global
correction stage of the Kalman filter to generate the fused bounding box x¢. Eq. 9 allows the
Kalman filter to have less trust in measurements that have lower weights. The Kalman filter
for the fusion center is essentially identical to those applied to the individual trackers (Eqgs.
Eq. 1,2) but the observation matrix C reflects the fact that the observations are given by the
outputs of the n trackers. Algorithm 3 summarizes the proposed approach.

Algorithm 1 HAB-DF
Input: Set of n trackers s; € S, initial bounding box xp, set V of images
Output: Bounding box s representing the fused output
1: Initialize all trackers s; with xo.
2: Initialize Kalman filter for each algorithm implementation s
3: Initialize Kalman filter for fused data model
4: while V has new images do
5 Load new image
6 for Each tracker s; € S do
7: Generate bounding box x; for each tracker s;
8
9

Apply Kalman filter (Eq. 1,2) to x;
Compute Mahalanobis Distance weight wy,
10: end for
11: Wait for all trackers s;
12: Apply majority voting to find wy
13: Calculate Ry according to Eq. (9)
14: Apply Kalman filter (Eq. 1,2) using R as the observation covariance to generate
the global estimate x
15: end while

The weighted Kalman filter data fusion step in Eq. 9 allows for flexibility. The frame-
work can be designed to take data of any size and fuse it. Theoretically, we can improve our
results by using as many trackers as necessary, but in real-time applications, we are limited
by the computation capabilities of our processor. By taking advantage of the confidence
levels generated by each Kalman filter, the tracker ensembles are able to perform a majority
vote that weights the generated Bayesian statistics.

If there are multiple trackers we can expect a fusion that weighs the trackers relative to
their performance to perform better than any individual tracker. However, because we do
not have the accuracies available to us a priori we estimate the weights in real-time using a
Bayesian approach.
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4 Results

We initially carried out separate evaluations of the four trackers that comprise our imple-
mentation of the proposed framework on the OTB-50 dataset. For STRUCK' and TLD? our
results were close to the results reported in [8, 10]. For CMT and GOTURN, to the best
of our knowledge, OTB-50 results are not publicly available so those had to be generated’.
We then evaluated our approach on the same dataset with these same four trackers as part of
our ensemble. We adjusted the values of @ proportionally to the success rate of each of the
trackers on the OTB-50 dataset. The method showed a 5.5% increase in success relative to
the best tracker in the ensemble and a 2.6% increase in precision. Since our method focuses
on improving the overall robustness of the trackers, we expected the larger increase in suc-
cess rate. The improvement in precision demonstrates that this method is not penalized by
“imprecise” trackers such as CMT.
Figure | details how the framework is implemented.

Our tracker
Synchronize Majority vote and
Trackers fusion center
GOTURN —
Mahalanobis
" bank for
each tracker
TLD —— Kalman
filter
bank for Kalman filter — Output
each
tracker L |
CMT —
— Majority vote
Struck —

Figure 1: Schematic representation of the implementation of the proposed framework.

Our results in Figure 2 illustrate the performance of the proposed approach. Our ensem-
ble leverages the individual strengths of each tracker to obtain higher levels of robustness
throughout the various datasets. Even the best tracker in our ensemble performed poorly in
certain scenarios, and despite providing the largest influence on the input, the other trackers
help improve performance overall.

Our ensemble is robust to failures from the lower ranked trackers such as GOTURN or
CMT, and the failures of these trackers did not affect the overall performance when they

Lthe results were obtained using source code available at https://github.com/samhare/struck

2the results were obtained using source code available at https:/github.com/klahaag/CFtld

3the results for CMT and GOTURN were obtained using source code available at
https://github.com/gnebehay/CMT and https://github.com/davheld/GOTURN respectively. = We applied these
methods “as shipped”
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Figure 2: Results of our Tracker(ME_T4) on OPE for OTB-50

occurred individually as seen in Figures 3 and 4. In the Figures our tracker is denoted by
the yellow bounding box, and the color scheme for the other trackers is red/blue for TLD
(blue when it is lost since TLD can make that determination), purple for GOTURN, green
for CMT and white for Struck.

Figures 5 and 6 illustrate that our tracker is also robust to failures generated by the
stronger trackers in the ensemble such as TLD or Struck.

Figure 3: Robustness to failure from GO-  Figure 4: Robustness to failure due to CMT
TURN

A simple majority voting approach would have allowed poorly performing trackers to
degrade the overall results. Our method mitigates this issue by assigning weights based on
the Mahalanobis distances of the measurements generated by each tracker, and also by in-
corporating previous knowledge about the performance of the individual trackers. In Figures
3 and 4, it can be observed that these anomalous measurements have a minimal effect on
the overall tracking result. In the first subfigure, GOTURN’s distance from the other trackers
assigns the tracker a high weight due to Eq (8). Hence, GOTURN has a minimal effect on the
final estimate and continues to do so due to the motion model associated with the resultant
tracker.

In Figure 5, the best tracker in the ensemble has failed. Because our weighing mechanism
is not just a weighted voting scheme, our tracker is able to disregard the measurements from
Struck. In the second subfigure, we see that two trackers are lost, but our ensemble is still able
to perform very well. By taking advantage of the proximity between Struck and GOTURN
as dictated by Eq. (8) these trackers have a much higher influence on the output. CMT and
TLD, on the other hand, are far from any other tracker, and accrue a higher penalty and do
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Figure 5: Robustness to failure from the  Figure 6: Robustness to the failure of multi-
strongest tracker in the ensemble ple trackers

not significantly influence the output. The weights generated by the Mahalanobis distance
allow the framework to smooth out the estimate and engender a smoother and more robust
output.

Besides positively impacting success and precision, the method also significantly in-
creased the score where all the trackers had a similar score for the specific metric. This
benefit is especially obvious for the OPE of out-of-plane rotations.

Precision plots of OPE - out-of-plane rotation (39) Success plots of OPE - out-of-plane rotation (39)
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Figure 7: The increase in performance for out-of-plane rotation

Despite the significant improvement in most scenarios, in the rare situations where per-
formance was drastically different among trackers, a decrease in performance was observed
relative to the best tracker in the ensemble. When multiple trackers are significantly worse
than the best trackers, the performance may decrease. This is especially obvious for the
case of low resolution images in which GOTURN and CMT perform very poorly and hence
debilitate the overall performance.

As Table 1 indicates, our approach improves the performance in 8 of the 12 scenarios.
In the cases where the performance decreases, it is important to note the large discrepancy
between the best tracker and the other trackers in the ensemble. Because the method uses the
confidence generated by the Kalman Filter, when multiple trackers show poor performance,
our results can be negatively affected. The improvement is most obvious and prominent
when the trackers show similar performances. This problem can be mitigated by either re-
fraining from using trackers that perform very poorly under certain scenarios or by adjusting
its prior weight according to its worst-case performance.
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Figure 8: The decrease in performance for low resolution

Table 1: Summary of Results on OPE

Best Worst Fusion Percent
. Best Tracker Worst Tracker Change
Scenario Score 5
Tracker Score Tracker Score Cresdar S Relative to

(Precision/Success) (Precision/Success) Best Tracker
Total Struck 5817440 GOTURN 436/.337 506/.464 +2.581% / +5.454%
illumination | Struck 581/.413 GOTURN 347/.291 524/.427 +1.158% / +3.389%
:’;zﬁg'fl““e Struck/TLD | .531/.397 GOTURN A454/.357 575/.448 +8.286% / +12.846%
scale Struck 562/.386 CMT 435/.327 5741432 +2.135% / +11.917%
variation
occlusion Struck/TLD | .521/.408 CMT/GOTURN | .404/.311 548/.431 +5.182% / +5.637%
deformation | Struck 516/.414 CMT 373/.301 568/.450 +10.078% / +8.696%
motion blur | Struck 487/.406 GOTURN 300/.254 450/.366 -8.222% /-10.929%
fast motion | Struck 520/.424 GOTURN 410/.282 455/.377 -14.286% / -12.467%
;‘:nla’:l“:: TLD 552/.435 GOTURN 332/.326 556/.439 +0.725% / +0.920%
outof view | Struck 482/.444 GOTURN 332/.316 465/.441 -3.656% /-0.680%
Ic);l.fml:f; ound | gk 530/.429 CMT/ 341/.263 5471437 +3.207%  +1.864%
low resolution | Struck .446/.350 GOTURN .194/.134 .263/.219 -69.582% /-59.818%

5 Conclusion

A novel Bayesian data fusion approach was applied to the problem of vision-based target
tracking and showed promising results in the OTB-50 dataset. Significant increases in ro-
bustness were observed despite the weaknesses of certain trackers. The method provides an
adaptive framework that uses both the local statistics generated by each tracker as well as
a weighted majority voting mechanism to determine the target bounding box at each frame.
Pretraining is not required, and the method is robust in practical scenarios due to its ability
to integrate multiple source of data.

One simple way to extend this work would be to consider the problem of outlier detec-
tion. If it is known with high probability that a tracker is lost, it can be reinitialized. Fault
detection and correction would improve overall success and greatly assist in generating a
better, more robust framework [21]. In particular, it would alleviate the issues that occur
when some trackers perform substantially worse than the others. One avenue is to simply
use the confidence generated by the Mahalanobis distance to determine if a tracker is an
outlier. Possible alternative approaches include supervised ideas such as those presented in
[24]. Keeping with the Bayesian and unsupervised nature of the proposed framework, an
unsupervised approach is more fitting and some possible ideas include those presented in
[14, 16, 17].
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