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Multispecies Fruit Flower Detection Using a Refined
Semantic Segmentation Network

Philipe A. Dias , Amy Tabb , and Henry Medeiros

Abstract—In fruit production, critical crop management deci-
sions are guided by bloom intensity, i.e., the number of flowers
present in an orchard. Despite its importance, bloom intensity is
still typically estimated by means of human visual inspection. Exist-
ing automated computer vision systems for flower identification are
based on hand-engineered techniques that work only under specific
conditions and with limited performance. This letter proposes an
automated technique for flower identification that is robust to un-
controlled environments and applicable to different flower species.
Our method relies on an end-to-end residual convolutional neural
network (CNN) that represents the state-of-the-art in semantic seg-
mentation. To enhance its sensitivity to flowers, we fine-tune this
network using a single dataset of apple flower images. Since CNNs
tend to produce coarse segmentations, we employ a refinement
method to better distinguish between individual flower instances.
Without any preprocessing or dataset-specific training, experimen-
tal results on images of apple, peach, and pear flowers, acquired
under different conditions demonstrate the robustness and broad
applicability of our method.

Index Terms—Bloom intensity estimation, flower detection, se-
mantic segmentation networks, precision agriculture.

I. INTRODUCTION

B LOOM intensity corresponds to the number of flowers
present in orchards during the early growing season. Cli-

mate and bloom intensity information are crucial to guide the
processes of pruning and thinning, which directly impact fruit
load, size, coloration, and taste [1], [2]. Accurate estimates of
bloom intensity can also benefit packing houses, since early
crop-load estimation greatly contributes to optimizing posthar-
vest handling and storage processes.

Visual inspection is still the dominant approach for bloom
intensity estimation in orchards, a technique which is time-
consuming, labor-intensive and prone to errors [3]. Since only a
limited sample of trees is inspected, the extrapolation to the en-
tire orchard relies heavily on the grower’s experience. Moreover,
it does not provide information about the spatial variability in the
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orchard, although the benefits of precision agriculture practices
are well known [4].

These limitations added to the short-term nature of flower
appearance until petal fall make an automated method highly
desirable. Multiple automated computer vision systems have
been proposed to solve this problem, but most of these meth-
ods rely on hand-engineered features [5], making their overall
performance acceptable only under relatively controlled envi-
ronments (e.g., at night with artificial illumination). Their appli-
cability is in most cases species-specific and highly vulnerable
to variations in lightning conditions, occlusions by leaves, stems
or other flowers [6].

In the last decade, deep learning approaches based on con-
volutional neural networks (CNNs) led to substantial improve-
ments in the state-of-the-art of many computer vision tasks [7].
Recent works have adapted CNN architectures to agricultural
applications such as fruit quantification [8], classification of
crops [9], and plant identification from leaf vein patterns [10].
To the best of our knowledge, our work in [11] was the first to
employ CNNs for flower detection. In that work, we combined
superpixel-based region proposals with a classification network
to detect apple flowers. Limitations of that approach are intrinsic
to the inaccuracies of superpixel segmentation and the network
architecture.

In the present work, we provide the following contributions
for automated flower segmentation:

� A novel technique for flower identification that is i) au-
tomated, ii) robust to clutter and changes in illumination;
and, iii) generalizable to multiple species. Using as starting
point a fully convolutional network (FCN) [12] pre-trained
on a large multi-class dataset, we describe an effective fine-
tuning procedure that adapts this model for fine pixel-wise
flower segmentation. Our final method evaluates in less
than 50 seconds high-resolution images covering each a
full tree. Although the task comparison is not one-to-one,
human workers may need on average up to 50 minutes to
count the number of flowers per tree.

� A feasible procedure for evaluating high-resolution images
with deep FCNs on commercial GPUs. Fully convolutional
computations require GPU memory space that exponen-
tially increases according to image resolution. We employ
an image partitioning mechanism with partially overlap-
ping windows, which reduces artifacts introduced by arti-
ficial boundaries when evaluating disjoint image regions.

� Release of an annotated dataset with pixel-accurate labels
for flower segmentation on high resolution images [13].

2377-3766 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9427-7112
https://orcid.org/0000-0002-0827-0908
https://orcid.org/0000-0002-7704-5587
mailto:philipe.ambroziodias@marquette.edu
mailto:henry.medeiros@marquette.edu
mailto:amy.tabb@ars.usda.gov


3004 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

We believe this can greatly benefit the community, since
this is a very time consuming yet critical task for both
training and evaluation of segmentation models.

II. RELATED WORK

Previous attempts at automating bloom intensity estimation
were mostly based on color thresholding, such as the works
described in [14], [15] and [16]. Despite differences in terms
of color-space used for analysis (e.g., HSL and RGB), all these
methods fail when applied in uncontrolled environments. Apart
from size filtering, no morphological feature is taken into ac-
count, such that thresholding parameters have to be adjusted
in case of changes in illumination, camera position or flower-
ing density. Even strategies using aerial multispectral images
such as [17] also rely solely on color information for image
processing.

Our previous work in [11] introduced a novel approach for
apple flower detection that relies on a fine-tuned Clarifai CNN
[18] to classify individual superpixels composing an image.
That method highly outperformed color-based approaches, es-
pecially in terms of generalization to datasets composed of
different flower species and acquired in uncontrolled environ-
ments. However, existing superpixel algorithms rely solely on
local context information, representing the main source of im-
precisions in scenarios where flowers and the surrounding back-
ground present similar colors.

While early attempts for autonomous fruit detection also re-
lied on hand-engineered features (e.g., color, texture, shape) [6],
recent works have been exploring more advanced computer vi-
sion techniques. One example is the work of Hung et al. [19],
which combines sparse autoencoders [7] and support vector ma-
chines (SVM) for segmenting leaves, almonds, trunks, ground
and sky. The approaches described by Bargoti and Underwood
in [20] and Chen et al. in [8] for fruit detection share some
similarities with our method for flower segmentation. In [20],
the authors introduce a Faster R-CNN trained for the detection
of mangoes, almonds and apple fruits on trees. The method in-
troduced in [8] for counting apples and oranges employs a fully
convolutional network (FCN) to perform fruit segmentation and
a convolutional network to estimate fruit count.

End-to-end fully convolutional networks [21] have been re-
placing traditional fully connected architectures for image seg-
mentation tasks [22]. Conventional architectures such as the
Alexnet [23] and VGG [24] networks are very effective for image
classification but provide coarse outputs for image segmentation
tasks. This is a consequence of the image downsampling intro-
duced by the max-pooling and striding operations performed by
these networks, which allow the extraction of learned hierarchi-
cal features at the cost of pixel-level precision [12].

Different strategies have been proposed to alleviate the ef-
fects of downsampling [22], including the use of deconvolution
layers [21], [25], and encoder-decoder architectures with skip
layer connections [26], [27]. The DeepLab model introduced
in [12] is one of the most successful approaches for seman-
tic image segmentation using deep learning. By combining the
ResNet-101 [28] model with atrous convolutions and spatial

pyramid pooling, it significantly reduces the downsampling rate
and achieves state-of-the-art performance in challenging seman-
tic segmentation datasets such as the PASCAL VOC [29] and
COCO [30].

In addition to the changes in CNN architecture, the authors of
DeepLab also employ the dense CRF model described in [31]
to produce fine-grained segmentations. Although providing vi-
sually appealing segmentations, this refinement model relies on
parameters that have to be optimized by means of supervised
grid-search. In [32], we introduced a generic post-processing
module that can be coupled to the output of any CNN to re-
fine segmentations without the need for dataset-specific tuning.
Called region growing refinement (RGR), this algorithm uses
the score maps available from the CNN to divide the image
into regions of high confidence background, high confidence
object and uncertainty region. By means of appearance-based
region growing, pixels within the uncertainty region are clas-
sified based on initial seeds randomly sampled from the high
confidence regions.

III. OUR APPROACH

In this section, we first describe the pre-training and fine-
tuning procedures carried out to obtain a CNN highly sensitive
to flowers. Subsequently, we describe the sequence of operations
that our pipeline performs to segment flowers in an image.

A. Network Training

One of the largest datasets available for semantic segmenta-
tion, the COCO dataset [30] was recently augmented by Caesar
et al. [33] into the COCO-Stuff dataset. This dataset includes
pixel-level annotations of classes such as grass, leaves, tree and
flowers, which are relevant for our application. In the same work,
the authors also discuss the performance of modern semantic
segmentation methods on COCO-Stuff, with a DeepLab-based
model outperforming the standard FCN. Thus, we opted for
the publicly available DeepLab-ResNet model pre-trained on
the COCO-Stuff dataset as the starting point for our pipeline.
Rather than fine-tuning the dense CRF model used in the origi-
nal DeepLab work, we opt for the generic RGR algorithm as a
post-processing module to obtain fine-grained segmentations.

The base model was originally designed for segmentation
within the 172 COCO-Stuff classes. To adapt its architecture
for our binary flower segmentation task, we perform procedures
known as network surgery and fine-tuning [34]. The surgery
procedure is analogous to the pruning of undesired branches in
trees: out of the original 172 classification branches, we preserve
only the weights and connections responsible for the segmenta-
tion of classes of interest.

We considered first an architecture preserving only the flower
classification branch, followed by a sigmoid classification unit.
However, without the normalization induced by the model’s
original softmax layer, the scores generated by the transferred
flower branch are unbounded and the final sigmoid easily satu-
rates. To alleviate the learning difficulties caused by such a poor
initialization, we opted for tuning a model with two-branches,
under the hypothesis that a second branch would allow the
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Fig. 1. Best viewed in color. Diagram illustrating the sequence of tasks performed by the proposed method for flower detection. Each task and its corresponding
output (shown below the arrows) are described in Algorithm 1. In the heatmaps, blue is associated with lower scores, while higher scores are illustrated with red.

network to learn a background representation that properly
normalizes the predictions generated by the foreground (flower)
branch.

We have observed experimentally that nearby leaves repre-
sent one of the main sources of misclassification for flower
segmentation. Moreover, predictions for the class leaf presented
the highest activations when applying the pre-trained model to
our training dataset. For these reasons, we opt for this branch
together with the one associated with flowers to initialize our
two-branch flower segmentation network.

The adapted architecture was then fine-tuned using the train-
ing set described in Section IV, which contains 100 images of
apple trees. For our experiments, the procedure was carried out
for 10,000 iterations using the Caffe framework [35], with an
initial learning rate of 10−4 that polynomially decays according
to 10−4 × (1 − i/10000)0.9 , where i is the iteration number.
Aiming at scale robustness, our fine-tuning procedure employs
the same strategy used for model pre-training, where each train-
ing portrait is evaluated at (0.5, 0.75, 1.0, 1.25, 1.5) times its
original resolution.

While the validation set has pixel-accurate annotations ob-
tained using the procedure described in Section IV, the training
set was annotated using the less precise but quicker superpixel-
based procedure described in our previous work [11]. Less than
5% of the total image areas in this dataset contain flowers. To
compensate for this imbalance, we augmented portraits con-
taining flowers by mirroring them with respect to vertical and
horizontal axes. Following the original network parameteriza-
tion, we split the 100 training images into portraits of 321 × 321
pixels, corresponding to a total of 52,644 training portraits after
augmentation.

B. Segmentation Pipeline

The method we propose for fruit flower segmentation con-
sists of three main operations: 1) divide a high resolution image
into smaller patches, in a sliding window manner; 2) evaluate

Algorithm 1: Proposed approach for flower detection.
Input: Image I .
Output: Estimated flower segmentation map Ŷ of image I .

1: Sliding window: divide I into a set of n portraits P .
2: for each portrait p(i) ∈ P do
3: Compute scoremaps m

(i)
B and m

(i)
F using the

fine-tuned CNN
4: end for
5: Obtain MB and MF by fusing m

(i)
B and m

(i)
F

(i = 1, . . . , n), respectively according to Eq. 2.
6: Normalize MB and MF into M̃B and M̃F , respectively

according to Eq. 3.
7: Generate Ŷ by applying RGR to M̃B and M̃F .

each patch using our fine-tuned CNN; 3) apply the refinement
algorithm on the obtained scoremaps to compute the final seg-
mentation mask. These steps are described in detail below. In
our description, we make reference to Algorithm 1 and Fig. 1.

1) Step 1 - Sliding window: As mentioned above, the adopted
CNN architecture either crops or resizes input images to
321 × 321 portraits. Since our datasets are composed of im-
ages with resolution ranging from 2704 × 1520 to 5184 × 3456
pixels (see Section IV), we emulate a sliding window approach
to avoid resampling artifacts. More specifically, we split each
input image I into a set P of n portraits p(i) ∈ P . Each portrait
is 321 × 321 pixels large, i.e., p(i) ∈ Rr×r with r = 321. Crop-
ping non-overlapping portraits from the original image intro-
duces artificial boundaries that compromise the detection qual-
ity. For this reason, in our approach each portrait overlaps a
percentage s of the area of each immediate neighbor. For our
experiments, we adopted s = 10%. When the scoremaps are
fused, the results corresponding to the overlapping pixels are
discarded. Fig. 2 illustrates this process for a pair of subsequent
portraits. The scores obtained for each portrait are depicted as a
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Fig. 2. Best viewed in color. Illustration of the sliding window and subsequent
fusion process that comprise our segmentation pipeline. Each portrait overlaps a
certain area of its neighbors, which is discarded during fusion to avoid artifacts
caused by artificial boundaries.

Fig. 3. Best viewed in color. Example of segmentation refinement for a given

pair of scoremaps. (a) Background scoremap m
(i)
B . (b) Foreground scoremap

m
(i)
F . (c) Coarse segmentation by direct thresholding of the scoremaps. (d)

Refined segmentation using RGR.

heatmap, where blue is associated with lower scores and higher
scores are illustrated with red.

2) Step 2 - CNN prediction: We evaluate in parallel each por-
trait p(i) with our fine-tuned network for flower identification.
The CNN is equivalent to a function f

f : p(i) → {m(i)
F ,m

(i)
B }, (1)

which maps each input p(i) into two pixel-dense scoremaps:
m

(i)
F ∈ Rr×r represents the pixel-wise likelihood that pixels

in p(i) belong to the foreground (i.e., flower), while m
(i)
B ∈

Rr×r corresponds to the pixel-wise background likelihood. The
heatmaps in Figures 3(a) and (b) are examples of scoremaps
computed for a given portrait.

3) Step 3 - Fusion and refinement: After evaluating each
portrait, we generate two global scoremaps MB and MF by
combining the predictions obtained for all p(i) ∈ P . Let c(i)

represent the pixel-coordinates of p(i) in I after discarding the
padding pixels. The fusion procedure is defined as

∀p(i) ∈ P, MF,B (c(i)) = m
(i)
F,B , (2)

such that both scoremaps MB and MF have the same resolution
as I . As illustrated in Fig. 2, the padded areas of m

(i)
F,B (outside

the red box) are discarded during fusion. For every pixel in the
image, a single prediction score is obtained from exactly one
portrait, such that artifacts introduced by artificial boundaries
are avoided.

After fusion, the scoremaps MB and MF are normalized into
scoremaps M̃B and M̃F using a softmax function

M̃F,B (qj ) =
exp(MF,B (qj ))

exp(MB (qj )) + exp(MF (qj ))
(3)

where qj is the j-th pixel in the input image I . With this formu-
lation, for each pixel qj the scores M̃B (qj ) and M̃F (qj ) add to
one, i.e., they correspond to the probability that qj belongs to
the corresponding class.

As Fig. 3(c) shows, the predictions obtained directly from
the CNN are coarse in terms of adherence to actual flower
boundaries. Therefore, rather than directly thresholding M̃F ,
this scoremap and the image I are fed to the RGR refinement
module described in [32]. For our application, the refinement
algorithm relies on two high-confidence classification regions
RF and RB defined according to

RF,B =
{

qj |M̃F,B (qj ) > τF,B

}
(4)

where τB and τF are the high-confidence background and fore-
ground thresholds. Using the high-confidence regions as start-
ing points, the RGR algorithm performs multiple Monte Carlo
region growing steps that groups similar pixels into clusters.
Afterwards, it performs majority voting to classify each cluster
according to the presence of flowers. Each pixel qj within a clus-
ter contributes with a positive vote if its score M̃F (qj ) is larger
than a threshold τ0 . As detailed in Section V, this parameter
can be empirically tuned according to the dataset under con-
sideration. Based on a grid-search optimization on our training
dataset, we selected τ0 = 0.3 for all our experiments and fixed
τB = 0.1 and τF = 1.25 × τ0 .

IV. DATASETS

We evaluate our method on four datasets that we created and
made publicly available: AppleA, AppleB, Peach, Pear [13]. As
summarized in Table I, images from different fruit flower species
were collected in diverse uncontrolled environments and under
different angles of capture.

Both datasets AppleA and AppleB are composed of images of
apple trees, which were collected in a USDA orchard on a sunny
day. In both datasets, the trees are supported with trellises and
planted in rows. AppleA is a collection of 147 images acquired
using a hand-held camera. From this total, we randomly selected
100 images to build the training set used to train the CNN. Out of
the remaining 47 images, 30 were randomly selected to compose
the testing set for which we report results in Section V.

This dataset contains flowers that greatly vary in terms of size,
cluttering, occlusion by leaves and branches. Flowers compos-
ing its images have an average area of 10,730 pixels, but with a
standard deviation of 17,150 pixels. On average, flowers com-
pose only 2.5% of the total image area within this dataset, which
is otherwise vastly occupied by leaves.
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TABLE I
DATASETS SPECIFICATIONS

Fig. 4. Best viewed in color. Utility vehicle used for imaging. For the AppleB
dataset, this vehicle was used in conjunction with a background panel.

Fig. 5. Best viewed in color. Example of ground truth obtained from freehand
annotations. Left: positive examples are annotated in blue, while hard negatives
are indicated in red. Right: segmentation obtained after RGR refinement.

Differently from AppleA, for the AppleB dataset, a utility ve-
hicle equipped with a background unit was used for imaging,
such that trees in other rows are not visible in the images. Fig. 4
illustrates the utility vehicle used for image acquisition, and Fig-
ures 6 and 7 illustrate the differences between datasets AppleA
and AppleB.

The Peach and Pear datasets differ both in terms of species
and acquisition conditions, therefore representing adequate sce-
narios for evaluating the generalization capabilities of the pro-
posed method. Both datasets contain images acquired on an
overcast day and without a background unit. Compared to the
AppleA dataset, images composing these datasets present sig-
nificantly lower saturation and value means. Tables II and III

Fig. 6. Best viewed in color. Examples of flower detection in one image
composing the AppleA dataset.

Fig. 7. Best viewed in color. Examples of flower detection in one image
composing the AppleB dataset.

TABLE II
HSV STATISTICS OF IMAGES COMPOSING EACH DATASET
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TABLE III
HSV STATISTICS OF FLOWERS COMPOSING EACH DATASET

summarize the differences among datasets in terms of the statis-
tics of the HSV color components, where μ stands for mean
values and IQR for interquartile ranges.

Regarding the flower characteristics, apple blossoms are typi-
cally white, with hue components spread in the whole spectrum
(high IQRH ) and low saturation mean. Flowers composing
the AppleB dataset present higher brightness (μV ), while peach
flowers show a pink hue centered on μH = 325◦, with higher
saturation and lower value means. Moreover, pear flowers are
slightly different in terms of color (greener) and morphology, as
illustrated in Fig. 9.

A. Labeling

Image annotation for segmentation tasks is a laborious and
time-consuming activity. Labels must be accurate at pixel-level,
otherwise both supervised training and the evaluation of seg-
mentation techniques are compromised. Most existing anno-
tation tools rely on approximating segmentations as polygons,
which provide ground truth images that frequently lack accurate
adherence to real object boundaries [32].

We opted for a labeling procedure that combines freehand
annotations and RGR refinement [32]. Using a tablet, the user
draws traces on regions of the image that contain flowers, in-
dicating as well hard negative examples when necessary. These
traces indicate high-confidence segmentation points, which are
used as reference by RGR to segment the remaining parts of the
image. Fig. 5 shows an example of a ground truth segmentation
obtained using this procedure.1

V. EXPERIMENTS AND RESULTS

We aim at a method capable of accurate multi-species flower
detection, regardless of image acquisition conditions and with-
out the need for dataset-specific training or pre-processing. To
verify that our method satisfies all these requirements, we per-
formed experiments on the four different datasets described in
Section IV while only using the AppleA dataset for training.

We adopt as the main baseline our previous model described
in [11], which highly outperformed existing methods by em-
ploying the Clarifai CNN architecture to classify individual su-
perpixels. We therefore refer to that model as SPPX+CLARIFAI

and to our new method as DEEPLAB+RGR. We also compare
our results against a HSV-BASED method [15] that segments
images based only on HSV color information and size filtering
according to threshold values optimized using grid-search.

1We will make the annotation tool publicly available as future work.

TABLE IV
SUMMARY OF RESULTS OBTAINED FOR EACH METHOD

All three methods were tuned using the AppleA training
dataset, with differences in the pipeline for transfer learning.
For the three unseen datasets, the SPPX+CLARIFAI relies on a
pre-processing step that enhances contrast and removes the dif-
ferent backgrounds present in the images. Our new method
DEEPLAB+RGR does not require any pre-processing. Instead, it
employs the same pipeline regardless of the dataset, requiring
only adjustments in portrait size. As summarized in Table I, im-
ages composing the AppleA dataset have resolution 4.3× larger
than images in the other three datasets. Thus, we split images in
these datasets into portraits of 155 × 155 pixels, rather than the
321 × 321 pixels portraits used for AppleA.

The quantitative analysis of segmentation accuracy relies on
precision, recall, F1 and intersection-over-union (IoU) metrics
[29] computed at pixel-level, instead of the superpixel-wise met-
rics used in our previous work. Table IV summarizes the results
obtained by each method on the different datasets.

Our new model outperforms the baseline methods for all
datasets evaluated, especially in terms of generalization to un-
seen datasets. By combining a deeper CNN architecture and the
RGR refinement module, DEEPLAB+RGR improves both pre-
diction and recall rates in the validation AppleA set by more than
15%. Fig. 6 provides a qualitative example of flower detection
accuracy in this dataset.

As Fig. 7 illustrates, images composing the AppleB dataset
present a higher number of flower buds and illumination
changes, especially in terms of sunlight reflection by leaves. De-
spite the larger variance in comparison to the previous dataset,
the performance obtained by DEEPLAB+RGR surpasses 77% in
terms of F1 .

Results obtained for the Peach dataset demonstrate the limi-
tation of color-based methods and two important generalization
characteristics of our model. The HSV-BASED method is inca-
pable of detecting peach flowers, since their pink color is very
different from the white apple blossoms used for training. On the
other hand, our method presents F1 near 75%, indicating that it
can properly detect even flowers that differ to a great extent from
apple flowers in terms of color. Moreover, images composing
this dataset are characterized by a cloudy sky and hence poorer
illumination. Most cases of false negatives correspond to flower
buds, due to the lack of such examples in the training dataset.
As illustrated in Fig. 8, poor superpixel segmentation leads the
SPPX+CLARIFAI approach to incorrectly classify parts of the sky
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Fig. 8. Best viewed in color. Examples of flower detection in one image composing the Peach dataset. Left: detections provided by the SPPX+CLARIFAI method.
Right: detections obtained with our new DEEPLAB+RGR method.

Fig. 9. Best viewed in color. Examples of flower detection in one image
composing the Pear dataset.

as flowers. This problem is overcome by our new model, which
greatly increases precision rates to above 80%.

Furthermore, the high recall rate provided by DEEPLAB+RGR
in the Pear dataset demonstrates its robustness to slight varia-
tions in both flower morphology and color. As shown in Fig. 9,
similar to the Peach dataset, these images also present a cloudy
background. In addition to that, their background is character-
ized by a high level of clutter caused by the presence of a large
number of branches. These high texture components compro-
mise the background removal model used by SPPX+CLARIFAI.
Still, the DEEPLAB+RGR method provides a very accurate de-
tection of flowers, with precision above 90%.

The results obtained by our method for AppleB, Peach and
Pear datasets can be further improved by adjusting the parameter
τ0 used for final classification and refinement. As summarized
in Fig. 10, increasing τ0 from 0.3 to 0.5 increases in 3% the
F1 performance on AppleB, reaching both recall and precision
levels around 80%. For the Peach dataset, decreasing τ0 to 0.2
increases the recall rate to above 70%. Such adjustment can
be carried out quickly through a simple interactive procedure,
where τ0 is chosen according to its visual impact on the seg-
mentation of a single image.

In terms of inference time, the current implementation of
our algorithm on an Intel Xeon CPU E5-2620 v3 @ 2.40 GHz

Fig. 10. Segmentation performance in terms of F1 measure on each dataset
according to the parameter τ0 .

(62GB) with a Quadro P6000 GPU requires on average 50 sec-
onds to evaluate each high-resolution image composing our
datasets. Around 5 seconds are required to save portraits as in-
dividual files and load their corresponding prediction scores, a
process that can be simplified by generating portraits directly
within the neural network framework.

VI. CONCLUSION

We have presented a novel automated approach for flower
detection, which exploits state-of-the-art deep learning tech-
niques for semantic image segmentation. The applicability of
our method was demonstrated by its high flower segmenta-
tion accuracy across datasets that vary in terms of illumination
conditions, background composition, image resolution, flower
density and flower species. Without any supervised fine-tuning
or image pre-processing, our model trained using only images
of apple flowers succeeded in generalizing for peach and pear
flowers, which are noticeably different in terms of color and
morphology.

In the future, we intend to further improve the generaliza-
tion capabilities of our model by training and evaluating it on
multi-species flower datasets. We ultimately aim at a completely
autonomous system capable of online bloom intensity estima-
tion. The current implementation of our model can evaluate
high-resolution images of complete trees an order of magnitude
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faster than human workers. While in this work we are not cre-
ating maps of flowers at the block level, this method will scale
well for precision agricultural applications such as predicting
thinning spray treatments and timing.
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