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Abstract

Mobile manipulators are a potential solution to the increasing need for additional flexibility and mobility in industrial applications.
However, they tend to lack the accuracy and precision achieved by fixed manipulators, especially in scenarios where both the
manipulator and the autonomous vehicle move simultaneously. This paper analyzes the problem of dynamically evaluating the
positioning error of mobile manipulators. In particular, it investigates the use of Bayesian methods to predict the position of
the end-effector in the presence of uncertainty propagated from the mobile platform. The precision of the mobile manipulator is
evaluated through its ability to intercept retroreflective markers using a photoelectric sensor attached to the end-effector. Compared
to a deterministic search approach, we observed improved robustness with comparable search times, thereby enabling effective
calibration of the mobile manipulator.
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1. Introduction

Robotic manipulators have found a wide variety of applications, most prominently in manufacturing. Their versa-
tility in handling several tasks allows them to be applied in a wide range of assembly and material handling applica-
tions. With their increased deployment, the need for flexibility to enable reassignment with minimal reconfiguration
and motion in unstructured environments is high - especially in small industries [1]. The fixed manipulators currently
deployed, however, are restricted by their limited workspaces and inability to assist in complex assembly tasks. Mo-
bile manipulators have the potential to address these needs. With the base providing an unlimited workspace, and
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enabling the repositioning of the arm to ensure increased manipulability, mobile manipulators are better suited to
a number of manipulation applications. However, dynamic manipulation is a notoriously challenging task [2, 3, 4].
Although research on mobile manipulators started almost two decades ago, [5, 6, 7], most works focus on the control
and stability of the base and arm [8, 7, 9, 10] using techniques traditionally applied to a variety of robotics problems
[11, 12, 13, 14]. A comprehensive discussion of previous research on mobile manipulators, including topics such as
robot navigation, path planning, and performance evaluation, can be found in [15, 16].

However, without external localization and feedback control, mobile manipulators tend to suffer from reduced pre-
cision, as the coupled dynamics experienced during the simultaneous motion of the manipulator and mobile platform
reduces their overall precision [17]. Therefore, methods to calibrate mobile manipulators are needed [18]. Previous
attempts at solving this problem have used deterministic approaches [19] such as a spiral search with the platform sta-
tionary to localize a set of retroreflective markers using a photoelectric laser sensor and hence recalibrate the overall
pose of the manipulator. In most manufacturing applications, however, continuous motion operations can substantially
decrease production times in comparison with stop-and-go approaches [20]. In applications involving the manufacture
of large structures, such as in the aerospace and nautical industries, allowing the robotic platform to move would be
substantially more effective than continuously moving the structure itself. Also, in some applications such as welding
of large components, continuous motion can also improve the uniformity of the process, thereby increasing its quality
[21]. Therefore, there is a need to extend mobile manipulator calibration methods to scenarios in which the motion of
the base is not interrupted.

Stochastic search mechanisms have been shown to outperform spiral search methods in the presence of larger
uncertainty levels, which tends to be the case while the base is in motion [22]. Therefore, this paper presents novel
algorithms to improve search performance using stochastic methods that allow the pose of the manipulator to be
estimated without the need to interrupt the motion of the base.

2. Proposed Approach

We address the problem of measuring the performance of a robotic manipulator mounted on a mobile robotic plat-
form. More specifically, we are interested in investigating the scenario in which both the platform and the manipulator
simultaneously move while the robot accesses test points in a known configuration. The test points consist of multiple
retroreflective markers enclosed in collimator tubes rigidly attached to a calibration artifact. While the base moves
in a certain direction and with a certain speed, both of which can vary in time and are known up to an error, a six
degrees of freedom (DOF) manipulator mounted to the base must align its end-effector in all 6DOF with each marker
in sequence until the entire artifact has been observed. A laser sensor is mounted to the end-effector to localize the
markers. The alignment must be done as quickly and as accurately as possible considering the uncertainties in the mo-
tion of the robot. The collimators restrict the visibility of the markers, thereby enforcing not only positional but also
angular alignment between the sensor at the end-effector and the fiducial. Figure 1(a) shows a diagram illustrating the
cross-section of the retroreflective fiducial and collimator. Figure 1(b) shows a picture of our simulation environment
illustrating the arrangement of the fiducials with respect to the mobile manipulator, and Figure 1(c) shows a picture of
our proof-of-concept platform.

Fundamentally, this is a problem of estimating the relative pose of each marker with respect to the end-effector,
with the added difficulty that the base of the manipulator is in motion. A principled solution based on probabilistic
methods to estimate and compensate for the target motion can be employed to simultaneously estimate the position
and the velocity of the manipulator and the base. Evidently, the error caused by the imperfect platform motion would
accumulate and the accuracy of the system would deteriorate from marker to marker. A 6DOF heuristic search at each
marker is therefore needed to compensate for that. In this work, we propose a stochastic approach that estimates the
distribution of the positions of the markers and uses this distribution to search for the marker in the presence of motion
error. We compare this method with a deterministic search mechanism based on a spiral pattern.
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Figure 1: a) Cross-section of the retroreflective fiducial with collimator – the grayed out sensor position illustrates the maximum angle at which the
fiducial can be observed. b) Simulation environment – the retroreflective fiducial markers are placed at the bottom of the cylindrical collimators. c)
Proof-of-concept hardware platform and calibration artifact.

2.1. Fiducial Search Mechanism

In our proposed search algorithm, we initialize the base to move along a pre-defined path with linear velocity
vb and heading angle θb. A set of fiducial markers { fi}, i = 1, . . . , nm are positioned at coordinates pi =

[
xi, yi

]
on

the ground plane, where xi and yi are the coordinates of the fiducial along the x and y axis of a previously defined
coordinate frame. As the base moves, once a fiducial enters the range of the manipulator, the end-effector is moved
to the expected position of the fiducial. That is, let r represent the maximum distance that can be reached by the
manipulator at a certain orientation, and let pb(t) =

[
xb(t), yb(t)

]
represent the position of the base at time t. The

manipulator is moved to the fiducial position once ‖pb(t) − pi‖ ≤ r, where ‖·‖ represents the Euclidean norm. Since
the fiducial markers are placed at the ground plane, the orientation of the end-effector is maintained constant (i.e.,
facing down). If the sensor cannot detect the presence of the fiducial, a search procedure is triggered. If the fiducial
is intercepted, the position error, ei, and search time, ti, are recorded. This process is repeated until all the fiducials
are either intercepted by the sensor or leave the range of the manipulator. For the sake of simplicity, in this work we
assume the base velocity and heading angle are constant. We also assume all the fiducial markers can be reached by
the manipulator as the base moves along this trajectory without the need to change its heading angle. Algorithm 1
summarizes the overall search procedure.

2.1.1. Deterministic Search Points Generation
In the deterministic search approach, the fiducial search points are generated according to a spiral pattern, given by

xk = Rφk cos(φk), yk = Rφk sin(φk) (1)

where sk = [xk, yk] is the position of the next sample, k = 1, ..., ns, ns is the number of samples, R is the radius of the
spiral, and φk is the constant interpoint angular interval.

2.1.2. Stochastic Search Points Generation
In our stochastic search method, we model the system using a simple recursive Bayesian estimator, specifically, a

linear Kalman filter. The filter estimates the state of the end-effector, guiding it to the expected position of the marker.
If interception fails, it samples the probability distribution of the position to find it. Once the fiducial is localized, the
corresponding location error can be used to correct the position of the mobile platform. As Eq. 2 shows, we model
the base motion using a simple 2D constant velocity model in which the target state x(t) includes the position of the
base

[
xb(t), yb(t)

]
as well as its velocity

[
ẋb(t), ẏb(t)

]
. The state transition matrix A(t) takes into consideration the time

interval δt between two consecutive observations. The observation matrix C(t) models the fact that only the fiducial
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Algorithm 1 Fiducial search method.
Input: Fiducial coordinates pi =

[
xi, yi

]
, i = 1, . . . , nm. Base velocity vb and heading angle θb

Output: Position errors ei and search times ti of the i = 1, . . . , n f intercepted fiducials
1: Set base velocity to vb and heading angle to θb

2: n f = 0, i = 1
3: while i ≤ nm do
4: if ‖pb(t) − pi‖ ≤ r then
5: Move manipulator to pi

6: if Fiducial fi is not intercepted then
7: Generate sample points as described in Sections 2.1.1 and 2.1.2
8: Compensate base velocity as described in Section 2.1.4
9: Initiate fiducial search

10: while ‖pb(t) − pi‖ ≤ r and fi is not intercepted do
11: Perform fiducial search
12: end while
13: end if
14: if Fiducial fi is intercepted then
15: Compute error ei and search time ti
16: n f = n f + 1
17: end if
18: i = i + 1
19: end if
20: end while

positions are observed.

x(t) =


xb(t)
ẋb(t)
yb(t)
ẏb(t)

 , A(t) =


1 δt 0 0
0 1 0 0
0 0 1 δt

0 0 0 1

 , C(t) =

[
1 0 0 0
0 0 1 0

]
. (2)

The predicted target state x̂(t|t − 1) and its corresponding covariance Σ̃(t|t − 1) are then computed using the standard
Kalman filter equations. That is,

x̂(t|t − 1) =A(t − 1)x̂(t − 1|t − 1), Σ̃(t|t − 1) = A(t − 1)Σ̃(t − 1|t − 1)AT (t − 1) + Σww(t − 1), (3)

where Σww(t − 1) is the process noise covariance. The estimated target state x̂(t|t) and its corresponding covariance
Σ̃(t|t) are given by

x̂(t|t) =x̂(t|t − 1) + K(t)e(t), Σ̃(t|t) = [I − K(t)C(t)]Σ̃(t|t − 1), (4)

where e(t) is the innovation and K(t) is the Kalman gain, given by

e(t) =z(t) −C(t)x̂(t|t − 1), Σee(t) = C(t)Σ̃(t|t − 1)CT (t) + Σvv(t), K(t) = Σ̃(t|t − 1)CT (t)Σ−1
ee (t), (5)

where Σee(t) is the innovation covariance. The observation z(t) corresponds to the position of the previous fiducial
with additive zero-mean Gaussian noise with covariance Σvv(t), i.e., z(t) = pi−1 + η(t) where η(t) ∼ N(0,Σvv(t)). The
fiducial search points are then generated according to

sk ∼ N(x̂(t|t), Σ̃(t|t)), (6)

where N(µ,Σ) represents a normal distribution with mean µ and covariance Σ, and sk = [xk, yk], k = 1, ..., ns, and
ns are the sample position and the number of samples as described in Section 2.1.1. The samples are then ordered
according to their probability so that points which are more likely to contain the fiducial are searched first.
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(a) Velocity-compensated spiral search.

0
.4

6

0
.4

7

0
.4

8

-0
.2

7

-0
.2

7

-0
.2

6

-0
.2

6

-0
.3

7

-0
.3

6

-0
.3

6

-0
.2

5

-0
.2

0

-0
.1

5

-0
.1

0

(b) Velocity-compensated stochastic search.

Figure 2: Search point velocity compensation for a) spiral search and b) stochastic search. The figures represent the distances in centimeters from
the base of the mobile manipulator to the end-effector in the x and y coordinate axes. The figures on the left correspond to the original sample points
and the figures on the right show the points after velocity compensation.

2.1.3. Sample Discretization
Whereas the samples generated using the deterministic spiral pattern are intrinsically discrete, due to the fact

that the normal distribution in Eq. 6 is continuous, in the stochastic sample generation mechanism, a large number
of samples are very closely spaced, as Figure 3(a) illustrates. Therefore, searching over these samples would likely
introduce substantial redundancy in the search process and therefore significantly increase the search time. To address
this issue, we discretize the samples over a grid of resolution γ. That is, we divide the search space into a uniform grid
over the interval [xmin, xmax] and

[
ymin, ymax

]
so that the distance between two neighboring points is

∣∣∣x j − x j−1
∣∣∣ ≥ γ and∣∣∣y j − y j−1

∣∣∣ ≥ γ.
Although grid-based Bayesian methods or sequential Monte Carlo approaches could be used to directly gener-

ate discrete distributions [23], these approaches require more complex modeling strategies and are computationally
more intensive. As our experimental evaluation demonstrates, a simple discretized Kalman filter is able to effectively
estimate the distribution of the positions of the fiducials.

2.1.4. Base Velocity Compensation
Since the base of the manipulator is in motion during the search, the search points generated as described above

must be compensated for the base velocity. That is,

ŝk = sk + vbδk, (7)

where vb is the base velocity and δk is the time elapsed as the manipulator moves between point k − 1 and k. Figure 2
illustrates the sample points and the corresponding velocity-compensated points for both search mechanisms.

2.1.5. Iterative Trajectory Planning
A direct solution of Eq. 7 requires knowledge of the exact value of δk, which is not available a priori since changing

the position of the sample sk affects the travel time itself. To resolve this problem, we propose an iterative trajectory
planning mechanism. In our proposed method, we initially plan a trajectory using the velocity-compensated samples
as waypoints. Once an initial trajectory is planned, it is possible to use the values of δk generated by the motion planner
as it computes the trajectory of the manipulator to refine the trajectory. These values should represent a more accurate
estimate of the actual time elapsed as the robot moves from one point to the other. As we perform additional iterations
of this procedure, the compensated points converge to the actual positions of the samples. Algorithm 2 summarizes
this procedure.

Figure 3(b) illustrates the iterative planning procedure for the spiral search method. In the figure, the different
colors correspond to the trajectories generated at each iteration. It can be observed in the figure, particularly in regions
where the radius of the spiral is large, that the trajectories gradually converge to a final path (near the center of the
trajectories). A similar behavior is observed for the stochastic search method.
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Algorithm 2 Iterative search planning.
Input: Initial samples sk, number of samples ns, number of iterations ni

Output: Updated samples ŝk

1: Compute initial search times δ0
k using waypoint-planned trajectory for all k = 1, ..., ns

2: for j = 1 to ni do
3: Find the sample points ŝk using Eq. 7 with δk = δ

j−1
k

4: Update δ j
k using the times given by the motion planning algorithm

5: end for
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Figure 3: a) Illustration of the sample discretization process. b) Sample iterations of the planning algorithm. c) Convergence of the iterative planning
algorithm for different base speeds.

Table 1: Fiducial arrangement.

fi 1 2 3 4 5 6
xi (m) 0.94 1.14 1.37 1.57 1.82 2.00
yi (m) 0.34 0.32 0.37 0.32 0.34 0.32

3. Experimental Results

We evaluate our proposed stochastic search mechanism and the spiral search method in a simulation environment
as well as on a real proof-of-concept hardware platform. Our proof-of-concept platform consists of a Robai Cyton
Epsilon 1500 7 DOF manipulator rigidly attached to a Pioneer 3DX robot (Figure 1), and our simulations were
carried out using the Gazebo robot simulator. For the simulated experiments as well as the real world evaluations,
each experiment consisted of positioning the base at the origin of the global coordinate system, setting it in motion
with velocity vb, waiting for it to search for all the fiducials and then returning it to its initial position. Our evaluation
takes into consideration two main performance metrics: 1) the number of fiducials intercepted per experiment, n f , and
2) the search time per fiducial, ti. The experiments were carried out for base speeds vb ranging from 1 cm/s to 3 cm/s
in increments of 0.25 cm/s for the simulated experiments and 0.5cm/s for the real-world experiments. The heading
angle θb was set to zero in all the experiments. We used nm = 6 fiducials with collimators of internal diameter of 12.7
mm and height of 66.7 mm arranged as indicated in Table 1. The parameters of the stochastic search algorithm were
set to γ=14mm, Σww = 10−4 × diag(3, 2, 3, 2), Σvv = 10−4 × (1.8, 1.8), where diag(·) represents a diagonal matrix. The
spiral search parameters were R=4cm and φk = π

5 , which translates to a constant interpoint spacing of approximately
12mm. All the search performance results reported in this section are based on 10 repetitions of each experiment.

3.1. Iterative Planning

To determine the number of iterations needed for the planning method described in Section 2.1.5 to converge to a
stable trajectory, we used our simulation system to evaluate the root mean squared error (RMSE) between each pair
of consecutive iterations as a function of the number of iterations. Figure 3(c) shows the average results over ten runs
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(b) Average search times: left) stochastic search, right) spiral search.

Figure 4: Performance evaluation using the simulated environment. The green lines with circular markers indicate average values, red bars show
the medians, blue boxes represent the region between the first and third quartiles of the distribution, dotted lines show the minimum and maximum
values of the distributions. Red crosses represent points which were considered outliers and hence lie outside of the distribution.

of the experiment for several base velocities. As the figure indicates, the method converges after approximately four
iterations, and the number of iterations needed for convergence is relatively independent of the base velocity.

3.2. Search Performance

This section analyzes the search performance of both search methods in our simulation environment. In these
experiments, to emulate robot positioning error, we disturb its initial position with additive Gaussian noise so that it
is within a 1cm radius of its exact position 99% of the time. As demonstrated in the previous section, the iterative
planning algorithm converges for less than five iterations for all the base speeds under consideration. Therefore, the
results for the remaining of our experiments were obtained for ni = 5 planning iterations.

Figure 4(a) shows the average number of intercepted fiducials as a function of the base speed for both methods.
As the figure indicates, the stochastic search method intercepts an average of 4.27 fiducials whereas the spiral search
approach intercepts 3.55 fiducials. The figures also indicate that the number of interceptions decreases as the base
speed increases. This is caused by the fact that at higher speeds the manipulator has to cover a larger area while
searching for the fiducials and hence fewer points can be reached by the manipulator after base speed compensation.

Figure 4(b) shows the average search times for the two approaches. Both methods show similar search times:
5.90 seconds on average for stochastic search and 5.67 for spiral search. However, at higher velocities, the planning
algorithms have difficulty generating velocity-compensated samples for the spiral search approach, causing the search
to be truncated and hence generating artificially lower search times. The stochastic search method is less affected by
these planning difficulties as indicated by the fact that its search time does not decrease with the base speed.

3.3. Real World Experiments

In our experiments with the proof-of-concept platform, we used an optical tracking system consisting of six Op-
titrack Flex 13 cameras to manually align the position and orientation of the robot with the origin of the global
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(b) Average search times: left) stochastic search, right) spiral search.

Figure 5: Performance evaluation using the real world proof-of-concept platform. See the caption of Figure 4 for a description of the elements of
the graph.

coordinate system. Figures 5(a) and (b) show the average number of intercepted fiducials and the average search times
in our real-world experiments. In these experiments, the stochastic approach intercepted 4.10 fiducials on average
versus 3.86 from the spiral search method. The average search times were 4.18 and 5.06 seconds, respectively.

4. Conclusions

In this paper, we address the problem of calibrating mobile manipulators. We propose two dynamic search mecha-
nisms to locate fiducial markers from a mobile platform: a spiral-based deterministic method and a stochastic mech-
anism based on Kalman filters. Our methods allow the manipulator to search for fiducial markers in a calibration
artifact while the platform is in motion, thereby eliminating the need for the base to remain stationary at each cali-
bration location. Our simulated experiments demonstrate that the stochastic search algorithm outperforms the spiral
search method in terms of its ability to intercept markers without increasing the search times. We additionally val-
idated our approach using a proof-of-concept hardware platform. We are currently investigating the possibility of
extending our search mechanisms to 6DOF. Since performing a deterministic search in higher-dimensional spaces is a
non-trivial problem, we expect the stochastic approach to show further performance improvements in these scenarios.
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